Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Adv ; 7(31)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34330699

RESUMEN

Meeting international commitments to protect 17% of terrestrial ecosystems worldwide will require >3 million square kilometers of new protected areas and strategies to create those areas in a way that respects local communities and land use. In 2000-2016, biological and social scientists worked to increase the protected proportion of Peru's largest department via 14 interdisciplinary inventories covering >9 million hectares of this megadiverse corner of the Amazon basin. In each landscape, the strategy was the same: convene diverse partners, identify biological and sociocultural assets, document residents' use of natural resources, and tailor the findings to the needs of decision-makers. Nine of the 14 landscapes have since been protected (5.7 million hectares of new protected areas), contributing to a quadrupling of conservation coverage in Loreto (from 6 to 23%). We outline the methods and enabling conditions most crucial for successfully applying similar campaigns elsewhere on Earth.

2.
Rev. peru. biol. (Impr.) ; 26(3)ago. 2019.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1508852

RESUMEN

Durante el período 2000 - 2016, se llevaron a cabo 15 inventarios biológicos en áreas remotas en el pie de monte andino y el llano amazónico del Perú. En estos inventarios, 27 botánicos colectaron un total de 9397 especímenes de plantas vasculares fértiles. Hasta finales del 2017, más de la mitad de estos especímenes se han identificado a nivel de especie, de los cuales 64 especies y 2 géneros (Dicorynia y Monopteryx) representan nuevos registros para la flora del Perú. Si esta tasa de novedades se mantiene, el número de registros nuevos en el material de los inventarios podría aumentar, lo cual nos indica que aún queda mucho por descubrir en la flora andino-amazónica del Perú.


Between 2000 and 2016 we carried out 15 rapid biological inventories in remote areas of the Andean foothills and Amazon basin in Peru. During these inventories, 27 botanists collected 9397 fertile vascular plant specimens. By the end of 2017, more than half of these specimens had been identified to species. Of the 2303 species identified to date, 64 species and 2 genera (Dicorynia and Monopteryx) are new records for the flora of Peru. If this rate of discovery proves typical, the number of new records for Peru in the rapid inventory material could increase, which indicates that there is still much to discover in the Peruvian flora.

3.
AoB Plants ; 11(2): plz018, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31024680

RESUMEN

Disentangling the contributions of different processes that influence plant recruitment, such as competition and seed dispersal, is important given the increased human-mediated changes in tropical forest ecosystems. Previous studies have shown that seedling communities in an Afrotropical rainforest in southeastern Nigeria are strongly affected by the loss of important seed-dispersing primates, including Cross River gorillas (Gorilla gorilla diehli), chimpanzee (Pan troglodytes elioti) and drill (Mandrillus leucophaeus). Here we study how germination and survival of tree seedlings are affected by competition and reduced seed dispersal in three contiguous forest reserves, in southeastern Nigeria, with similar mature tree species composition and structure. We use an experimental design aimed at manipulating the effect of competition among seedlings in three protected and three hunted sites within the reserves. We use a total of sixty 5 × 5 m plots of three types: plots cleared of all seedlings, plots selectively cleared of all primate-dispersed seedlings and control plots. All seedlings were identified, measured, assigned to dispersal mode and tagged, and after 1 year we evaluated survival, mortality and new recruits. We found that in hunted sites germination of abiotically dispersed species was over four times higher in cleared plots compared to control plots, whereas germination of primate-dispersed species was the same, which indicated that dispersal limitation was the dominant force in seedling recruitment in hunted sites. This was supported by the fact that the germination of all dispersal modes in the selectively cleared plots in protected sites was similar to the control plots in the same sites, but germination of abiotically dispersed species was significantly lower than in cleared plots in hunted sites. Competition among seedlings was mostly evident from the fact that 75 % more seedlings of primate-dispersed species germinated in cleared compared to control plots in protected sites. We conclude that inter-seedling competition may be irrelevant to seedling recruitment in hunted sites, where dispersal limitation appears to be a much stronger force shaping the seedling plant community, and thus hunting indirectly reverses the importance of competition and dispersal limitation in structuring seedling communities.

4.
Proc Biol Sci ; 280(1759): 20130246, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23516245

RESUMEN

To assess ecological consequences of bushmeat hunting in African lowland rainforests, we compared paired sites, with high and low hunting pressure, in three areas of southeastern Nigeria. In hunted sites, populations of important seed dispersers-both small and large primates (including the Cross River gorilla, Gorilla gorilla diehli)-were drastically reduced. Large rodents were more abundant in hunted sites, even though they are hunted. Hunted and protected sites had similar mature tree communities dominated by primate-dispersed species. In protected sites, seedling communities were similar in composition to the mature trees, but in hunted sites species with other dispersal modes dominated among seedlings. Seedlings emerging 1 year after clearing of all vegetation in experimental plots showed a similar pattern to the standing seedlings. This study thus verifies the transforming effects of bushmeat hunting on plant communities of tropical forests and is one of the first studies to do so for the African continent.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Primates/fisiología , Dispersión de Semillas , Árboles/fisiología , Animales , Cadena Alimentaria , Actividades Humanas , Humanos , Mamíferos/fisiología , Nigeria , Densidad de Población , Plantones/crecimiento & desarrollo , Plantones/fisiología , Árboles/crecimiento & desarrollo , Clima Tropical
5.
Ecology ; 89(6): 1757-68, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18589539

RESUMEN

To assess how the decimation of large vertebrates by hunting alters recruitment processes in a tropical forest, we compared the sapling cohorts of two structurally and compositionally similar forests in the Rio Manu floodplain in southeastern Peru. Large vertebrates were severely depleted at one site, Boca Manu (BM), whereas the other, Cocha Cashu Biological Station (CC), supported an intact fauna. At both sites we sampled small (> or =1 m tall, <1 cm dbh) and large (> or =1 cm and <10 cm dbh) saplings in the central portion of 4-ha plots within which all trees > or =10 cm dbh were mapped and identified. This design ensured that all conspecific adults within at least 50 m (BM) or 55 m (CC) of any sapling would have known locations. We used the Janzen-Connell model to make five predictions about the sapling cohorts at BM with respect to CC: (1) reduced overall sapling recruitment, (2) increased recruitment of species dispersed by abiotic means, (3) altered relative abundances of species, (4) prominence of large-seeded species among those showing depressed recruitment, and (5) little or no tendency for saplings to cluster closer to adults at BM. Our results affirmed each of these predictions. Interpreted at face value, the evidence suggests that few species are demographically stable at BM and that up to 28% are increasing and 72% decreasing. Loss of dispersal function allows species dispersed abiotically and by small birds and mammals to substitute for those dispersed by large birds and mammals. Although we regard these conclusions as preliminary, over the long run, the observed type of directional change in tree composition is likely to result in biodiversity loss and negative feedbacks on both the animal and plant communities. Our results suggest that the best, and perhaps only, way to prevent compositional change and probable loss of diversity in tropical tree communities is to prohibit hunting.


Asunto(s)
Ecosistema , Árboles/fisiología , Animales , Aves/fisiología , Dinámica Poblacional , Semillas/fisiología , Factores de Tiempo , Vertebrados/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...