Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3302, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658535

RESUMEN

Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.


Asunto(s)
Cicatriz , Colágeno , Fibroblastos , Cicatrización de Heridas , Pez Cebra , Humanos , Animales , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Colágeno/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Cicatriz/metabolismo , Cicatriz/patología , Cicatriz/tratamiento farmacológico , Piel/metabolismo , Piel/patología , Piel/efectos de los fármacos , Fibrosis , Péptidos/farmacología , Péptidos/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos
2.
Nat Cell Biol ; 25(9): 1303-1318, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563253

RESUMEN

Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.


Asunto(s)
Acetil-CoA Carboxilasa , Malonil Coenzima A , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Malonil Coenzima A/metabolismo , Serina-Treonina Quinasas TOR/genética , Ácidos Grasos/metabolismo , Mamíferos/metabolismo , Adenosina Trifosfato
3.
Nat Commun ; 13(1): 6704, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344526

RESUMEN

Understanding the mechanisms governing selective turnover of mutation-bearing mtDNA is fundamental to design therapeutic strategies against mtDNA diseases. Here, we show that specific mtDNA damage leads to an exacerbated mtDNA turnover, independent of canonical macroautophagy, but relying on lysosomal function and ATG5. Using proximity labeling and Twinkle as a nucleoid marker, we demonstrate that mtDNA damage induces membrane remodeling and endosomal recruitment in close proximity to mitochondrial nucleoid sub-compartments. Targeting of mitochondrial nucleoids is controlled by the ATAD3-SAMM50 axis, which is disrupted upon mtDNA damage. SAMM50 acts as a gatekeeper, influencing BAK clustering, controlling nucleoid release and facilitating transfer to endosomes. Here, VPS35 mediates maturation of early endosomes to late autophagy vesicles where degradation occurs. In addition, using a mouse model where mtDNA alterations cause impairment of muscle regeneration, we show that stimulation of lysosomal activity by rapamycin, selectively removes mtDNA deletions without affecting mtDNA copy number, ameliorating mitochondrial dysfunction. Taken together, our data demonstrates that upon mtDNA damage, mitochondrial nucleoids are eliminated outside the mitochondrial network through an endosomal-mitophagy pathway. With these results, we unveil the molecular players of a complex mechanism with multiple potential benefits to understand mtDNA related diseases, inherited, acquired or due to normal ageing.


Asunto(s)
ADN Mitocondrial , Membranas Mitocondriales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia
4.
Cell Stress ; 5(11): 173-175, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34782889

RESUMEN

Cellular adaptation to stress is a crucial homeostatic process for survival, metabolism, physiology, and disease. Cells respond to stress stimuli (e.g., nutrient starvation, growth factor deprivation, hypoxia, low energy, etc.) by changing the activity of signaling pathways, and interact with their environment by qualitatively and quantitatively modifying their intracellular, surface, and extracellular proteomes. How this delicate communication takes place is a hot topic in cell biological research, and has important implications for human disease.

5.
Cell Metab ; 33(12): 2398-2414.e9, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34715039

RESUMEN

Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.


Asunto(s)
Macrófagos , Cicatrización de Heridas , Animales , Macrófagos/metabolismo , Ratones , Mitocondrias/metabolismo
6.
EMBO J ; 40(20): e107766, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34516001

RESUMEN

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI-based retrograde transport vesicles, thus concentrating them in the trans-Golgi. In genome-edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis-Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.


Asunto(s)
Glicoesfingolípidos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Brefeldino A/farmacología , Ceramidas/metabolismo , Toxina del Cólera/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Expresión Génica , Glicosilación/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Toxina Shiga/farmacología
7.
Nat Commun ; 12(1): 4404, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285225

RESUMEN

Activation of fibroblasts is essential for physiological tissue repair. Uncontrolled activation of fibroblasts, however, may lead to tissue fibrosis with organ dysfunction. Although several pathways capable of promoting fibroblast activation and tissue repair have been identified, their interplay in the context of chronic fibrotic diseases remains incompletely understood. Here, we provide evidence that transforming growth factor-ß (TGFß) activates autophagy by an epigenetic mechanism to amplify its profibrotic effects. TGFß induces autophagy in fibrotic diseases by SMAD3-dependent downregulation of the H4K16 histone acetyltransferase MYST1, which regulates the expression of core components of the autophagy machinery such as ATG7 and BECLIN1. Activation of autophagy in fibroblasts promotes collagen release and is both, sufficient and required, to induce tissue fibrosis. Forced expression of MYST1 abrogates the stimulatory effects of TGFß on autophagy and re-establishes the epigenetic control of autophagy in fibrotic conditions. Interference with the aberrant activation of autophagy inhibits TGFß-induced fibroblast activation and ameliorates experimental dermal and pulmonary fibrosis. These findings link uncontrolled TGFß signaling to aberrant autophagy and deregulated epigenetics in fibrotic diseases and may contribute to the development of therapeutic interventions in fibrotic diseases.


Asunto(s)
Autofagia/genética , Epigénesis Genética , Histona Acetiltransferasas/metabolismo , Esclerodermia Sistémica/patología , Factor de Crecimiento Transformador beta/metabolismo , Adulto , Anciano , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Biopsia , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Fibroblastos , Fibrosis , Técnicas de Inactivación de Genes , Voluntarios Sanos , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Células 3T3 NIH , Cultivo Primario de Células , Receptores de Factores de Crecimiento Transformadores beta , Transducción de Señal/genética , Piel/citología , Piel/patología , Proteína smad3/metabolismo , Adulto Joven
8.
Mol Cell ; 81(16): 3275-3293.e12, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34245671

RESUMEN

Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.


Asunto(s)
Proteínas de la Matriz de Golgi/genética , Proteoma/genética , Proteómica , Estrés Fisiológico/genética , Matriz Extracelular/genética , Aparato de Golgi/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , Transducción de Señal/genética
9.
Nat Commun ; 12(1): 2610, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972531

RESUMEN

Angiogenic sprouting relies on collective migration and coordinated rearrangements of endothelial leader and follower cells. VE-cadherin-based adherens junctions have emerged as key cell-cell contacts that transmit forces between cells and trigger signals during collective cell migration in angiogenesis. However, the underlying molecular mechanisms that govern these processes and their functional importance for vascular development still remain unknown. We previously showed that the F-BAR protein PACSIN2 is recruited to tensile asymmetric adherens junctions between leader and follower cells. Here we report that PACSIN2 mediates the formation of endothelial sprouts during angiogenesis by coordinating collective migration. We show that PACSIN2 recruits the trafficking regulators EHD4 and MICAL-L1 to the rear end of asymmetric adherens junctions to form a recycling endosome-like tubular structure. The junctional PACSIN2/EHD4/MICAL-L1 complex controls local VE-cadherin trafficking and thereby coordinates polarized endothelial migration and angiogenesis. Our findings reveal a molecular event at force-dependent asymmetric adherens junctions that occurs during the tug-of-war between endothelial leader and follower cells, and allows for junction-based guidance during collective migration in angiogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de Microfilamentos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Neovascularización Patológica/metabolismo , Proteínas Nucleares/metabolismo , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Animales , Cateninas/metabolismo , Movimiento Celular/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Transducción de Señal/genética , Esferoides Celulares/metabolismo
10.
J Invest Dermatol ; 141(4S): 1076-1086.e3, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33279585

RESUMEN

During wound healing, fibroblasts differentiate into nonproliferative contractile myofibroblasts, contribute to skin repair, and eventually undergo apoptosis or become senescent. MicroRNAs are post-transcriptional regulators of gene expression networks that control cell fate and survival and may also regulate senescence. In this study, we determined the regulated microRNAs in myofibroblasts isolated from wounds and analyzed their role in senescent myofibroblast formation. Transcriptome profiling showed that a 200 kilobase pair region of the Dlk1-Dio3‒imprinted domain on mouse chromosome 12 encodes for most of the upregulated microRNAs in the entire genome of mouse myofibroblasts. Among those, miR-127-3p induced a myofibroblast-like phenotype associated with a block in proliferation. Molecular analysis revealed that miR-127-3p induced a prolonged cell cycle arrest with unique molecular features of senescence, including the activation of the senescence-associated ß-galactosidase, increase in p53 and p21 levels, inhibition of lamin B1, proliferation factors, and the production of senescence-associated inflammatory and extracellular matrix‒remodeling components. Hence, miR-127-3p emerges as an epigenetic activator regulating the transition from repair to remodeling during skin wound healing but may also induce age-related defects, pathological scarring, and fibrosis, all linked to myofibroblast senescence.


Asunto(s)
Senescencia Celular/genética , MicroARNs/metabolismo , Miofibroblastos/patología , Piel/lesiones , Cicatrización de Heridas/genética , Animales , Proteínas de Unión al Calcio/genética , Diferenciación Celular/genética , Cromosomas de los Mamíferos/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Perfilación de la Expresión Génica , Humanos , Yoduro Peroxidasa/genética , Ratones , Piel/patología
11.
Am J Hum Genet ; 107(5): 989-999, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33053334

RESUMEN

Osteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families. KDELR2 encodes KDEL endoplasmic reticulum protein retention receptor 2, which recycles ER-resident proteins with a KDEL-like peptide from the cis-Golgi to the ER through COPI retrograde transport. Analysis of patient primary fibroblasts showed intracellular decrease of HSP47 and FKBP65 along with reduced procollagen type I in culture media. Electron microscopy identified an abnormal quality of secreted collagen fibrils with increased amount of HSP47 bound to monomeric and multimeric collagen molecules. Mapping the identified KDELR2 variants onto the crystal structure of G. gallus KDELR2 indicated that these lead to an inactive receptor resulting in impaired KDELR2-mediated Golgi-ER transport. Therefore, in KDELR2-deficient individuals, OI most likely occurs because of the inability of HSP47 to bind KDELR2 and dissociate from collagen type I. Instead, HSP47 remains bound to collagen molecules extracellularly, disrupting fiber formation. This highlights the importance of intracellular recycling of ER-resident molecular chaperones for collagen type I and bone metabolism and a crucial role of HSP47 in the KDELR2-associated pathogenic mechanism leading to OI.


Asunto(s)
Huesos/metabolismo , Colágeno Tipo I/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Osteogénesis Imperfecta/genética , Proteínas de Transporte Vesicular/metabolismo , Adulto , Alelos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Huesos/patología , Pollos , Preescolar , Colágeno Tipo I/química , Colágeno Tipo I/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Proteínas del Choque Térmico HSP47/química , Proteínas del Choque Térmico HSP47/genética , Humanos , Lactante , Masculino , Osteogénesis Imperfecta/diagnóstico , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Linaje , Cultivo Primario de Células , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Transporte de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
12.
J Cell Biol ; 218(6): 1853-1870, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31085560

RESUMEN

In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth. To elucidate the role of the mitochondrial RC in cartilage growth and pathology, we generated mice with impaired RC function in cartilage. These mice develop normally until birth, but their later growth is retarded. A detailed molecular analysis revealed that metabolic signaling and extracellular matrix formation is disturbed and induces cell death at the cartilage-bone junction to cause a chondrodysplasia-like phenotype. Hence, the results demonstrate the overall importance of the metabolic switch from fetal glycolysis to postnatal RC activation in growth plate cartilage and explain why RC dysfunction can cause short stature in children with mitochondrial diseases.


Asunto(s)
Cartílago/patología , Condrocitos/patología , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Trastornos del Crecimiento/complicaciones , Placa de Crecimiento/patología , Enfermedades Mitocondriales/etiología , Animales , Cartílago/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Colágeno Tipo II/fisiología , ADN Helicasas/fisiología , Transporte de Electrón , Metabolismo Energético , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Placa de Crecimiento/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/fisiología , Transducción de Señal
13.
Autophagy ; 14(3): 465-486, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29297744

RESUMEN

TGFB1 (transforming growth factor beta 1) is a potent cytokine playing a driving role in development, fibrosis and cancer. It is synthesized as prodomain-growth factor complex that requires tethering to LTBP (latent transforming growth factor beta binding protein) for efficient secretion into the extracellular space. Upon release, this large latent complex is sequestered by anchorage to extracellular matrix (ECM) networks, from which the mature growth factor needs to be activated in order to reach its receptors and initiate signaling. Here, we uncovered a novel intracellular secretion pathway by which the latent TGFB1 complex reaches the plasma membrane and is released from fibroblasts, the key effector cells during tissue repair, fibrosis and in the tumor stroma. We show that secretion of latent TGFB1, but not of other selected cytokines or of bulk cargo, is regulated by fibroblast-ECM communication through ILK (integrin linked kinase) that restricts RHOA activity by interacting with ARHGAP26/GRAF1. Latent TGFB1 interacts with GORASP2/GRASP55 and is detected inside MAP1LC3-positive autophagosomal intermediates that are secreted by a RAB8A-dependent pathway. Interestingly, TGFB1 secretion is fully abrogated in human and murine fibroblasts and macrophages that lack key components of the autophagic machinery. Our data demonstrate an unconventional secretion mode of TGFB1 adding another level of control of its bioavailability and activity in order to effectively orchestrate cellular programs prone to dysregulation as seen in fibrosis and cancer.


Asunto(s)
Autofagia/fisiología , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Transporte Biológico/fisiología , Proteínas Portadoras/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Fibrosis/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones
14.
J Cell Sci ; 129(4): 706-16, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26746240

RESUMEN

Cartilage oligomeric matrix protein (COMP) is an abundant component in the extracellular matrix (ECM) of load-bearing tissues such as tendons and cartilage. It provides adaptor functions by bridging different ECM structures. We have previously shown that COMP is also a constitutive component of healthy human skin and is strongly induced in fibrosis. It binds directly and with high affinity to collagen I and to collagen XII that decorates the surface of collagen I fibrils. We demonstrate here that lack of COMP-collagen interaction in the extracellular space leads to changes in collagen fibril morphology and density, resulting in altered skin biomechanical properties. Surprisingly, COMP also fulfills an important intracellular function in assisting efficient secretion of collagens, which were retained in the endoplasmic reticulum of COMP-null fibroblasts. Accordingly, COMP-null mice showed severely attenuated fibrotic responses in skin. Collagen secretion was fully restored by introducing wild-type COMP. Hence, our work unravels a new, non-structural and intracellular function of the ECM protein COMP in controlling collagen secretion.


Asunto(s)
Proteína de la Matriz Oligomérica del Cartílago/genética , Colágenos Fibrilares/metabolismo , Piel/metabolismo , Animales , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Células Cultivadas , Estrés del Retículo Endoplásmico , Femenino , Fibroblastos/metabolismo , Fibrosis , Ratones Endogámicos C57BL , Piel/patología
15.
J Biol Chem ; 288(13): 9303-12, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23420842

RESUMEN

The PACSIN (protein kinase C and casein kinase 2 substrate in neurons) adapter proteins couple components of the clathrin-mediated endocytosis machinery with regulators of actin polymerization and thereby regulate the surface expression of specific receptors. The brain-specific PACSIN 1 is enriched at synapses and has been proposed to affect neuromorphogenesis and the formation and maturation of dendritic spines. In studies of how phosphorylation of PACSIN 1 contributes to neuronal function, we identified serine 358 as a specific site used by casein kinase 2 (CK2) in vitro and in vivo. Phosphorylated PACSIN 1 was found in neuronal cytosol and membrane fractions. This localization could be modulated by trophic factors such as brain-derived neurotrophic factor (BDNF). We further show that expression of a phospho-negative PACSIN 1 mutant, S358A, or inhibition of CK2 drastically reduces spine formation in neurons. We identified a novel protein complex containing the spine regulator Rac1, its GTPase-activating protein neuron-associated developmentally regulated protein (NADRIN), and PACSIN 1. CK2 phosphorylation of PACSIN 1 leads to a dissociation of the complex upon BDNF treatment and induces Rac1-dependent spine formation in dendrites of hippocampal neurons. These findings suggest that upon BDNF signaling PACSIN 1 is phosphorylated by CK2 which is essential for spine formation.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Neuropéptidos/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Encéfalo/metabolismo , Clatrina/metabolismo , Dendritas , Silenciador del Gen , Péptidos y Proteínas de Señalización Intracelular , Ratones , Microscopía Fluorescente/métodos , Modelos Biológicos , Mutación , Plasticidad Neuronal , Neuronas/metabolismo , Fosforilación , Serina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sinapsis/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...