Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Nutr Biochem ; 127: 109590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311045

RESUMEN

The role of the muscle circadian clock in regulating oxidative metabolism exerts a significant influence on whole-body energy metabolism; however, research on the connection between the muscle circadian clock and obesity is limited. Moreover, there is a lack of studies demonstrating the regulatory effects of dietary butyrate on muscle circadian clock and the resulting antiobesity effects. This study aimed to investigate the impacts of dietary butyrate on metabolic and microbiome alterations and muscle circadian clock in a diet-induced obesity model. Male Sprague-Dawley rats were fed a high-fat diet with or without butyrate. Gut microbiota and serum metabolome were analyzed, and molecular changes were examined using tissues and a cell line. Further correlation analysis was performed on butyrate-induced results. Butyrate supplementation reduced weight gain, even with increased food intake. Gut microbiome analysis revealed an increased abundance of Firmicutes in butyrate group. Serum metabolite profile in butyrate group exhibited reduced amino acid and increased fatty acid content. Muscle circadian clock genes were upregulated, resulting in increased transcription of fatty acid oxidation-related genes. In myoblast cells, butyrate also enhanced pan-histone acetylation via histone deacetylase inhibition, particularly modulating acetylation at the promoter of circadian clock genes. Correlation analysis revealed potential links between Firmicutes phylum, including certain genera within it, and butyrate-induced molecular changes in muscle as well as phenotypic alterations. The butyrate-driven effects on diet-induced obesity were associated with alterations in gut microbiota and a muscle-specific increase in histone acetylation, leading to the transcriptional activation of circadian clock genes and their controlled genes.


Asunto(s)
Relojes Circadianos , Microbioma Gastrointestinal , Animales , Ratas , Masculino , Relojes Circadianos/genética , Butiratos/farmacología , Butiratos/metabolismo , Histonas/metabolismo , Epigénesis Genética , Ratas Sprague-Dawley , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo
2.
Nutrients ; 16(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257122

RESUMEN

Consumption of protein-rich diets and supplements has been increasingly advocated by individuals seeking to optimize metabolic health and mitigate the effects of aging. Protein intake is postulated to support muscle mass retention and enhance longevity, underscoring its perceived benefits in age-related metabolic regulation. However, emerging evidence presents a paradox; while moderate protein consumption contributes to health maintenance, an excessive intake is associated with an elevated risk of chronic diseases, notably obesity and diabetes. Furthermore, recent studies suggest that reducing the ratio of protein intake to macronutrients improves metabolic parameters and extends lifespan. The aim of this study is to review the current evidence concerning the metabolic effects of protein-restricted diets and their potential mechanisms. Utilizing rodent models, investigations have revealed that protein-restricted diets exert a notable influence over food intake and energy consumption, ultimately leading to body weight loss, depending on the degree of dietary protein restriction. These phenotypic alterations are primarily mediated by the FGF21 signaling pathway, whose activation is likely regulated by ATF4 and the circadian clock. The evidence suggests that protein-restricted diets as an alternative approach to calorie-restricted regimes, particularly in overweight or obese adults. However, more research is needed to determine the optimal level of restriction, duration, and long-term effects of such interventions.


Asunto(s)
Dieta con Restricción de Proteínas , Nutrientes , Humanos , Transducción de Señal , Longevidad , Obesidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA