RESUMEN
BACKGROUND: Water quality has been compromised and endangered by different contaminants due to Pakistan's rapid population development, which has resulted in a dramatic rise in waterborne infections and afflicted many regions of Pakistan. Because of this, modeling and predicting waterborne diseases has become a hot topic for researchers and is very important for controlling waterborne disease pollution. METHODS: In our study, first, we collected typhoid and malaria patient data for the years 2017-2020 from Ayub Medical Hospital. The collected data set has seven important input features. In the current study, different ML models were first trained and tested on the current study dataset using the tenfold cross-validation method. Second, we investigated the importance of input features in waterborne disease-positive case detection. The experiment results showed that Random Forest correctly predicted malaria-positive cases 60% of the time and typhoid-positive cases 77% of the time, which is better than other machine-learning models. In this research, we have also investigated the input features that are more important in the prediction and will help analyze positive cases of waterborne disease. The random forest feature selection technique has been used, and experimental results have shown that age, history, and test results play an important role in predicting waterborne disease-positive cases. In the end, we concluded that this interesting study could help health departments in different areas reduce the number of people who get sick from the water.
Asunto(s)
Fiebre Tifoidea , Enfermedades Transmitidas por el Agua , Humanos , Enfermedades Transmitidas por el Agua/diagnóstico , Enfermedades Transmitidas por el Agua/epidemiología , Fiebre Tifoidea/diagnóstico , Fiebre Tifoidea/epidemiología , Aprendizaje AutomáticoRESUMEN
Cloud computing has emerged as the most favorable computing platform for researchers and industry. The load balanced task scheduling has emerged as an important and challenging research problem in the Cloud computing. Swarm intelligence-based meta-heuristic algorithms are considered more suitable for Cloud scheduling and load balancing. The optimization procedure of swarm intelligence-based meta-heuristics consists of two major components that are the local and global search. These algorithms find the best position through the local and global search. To achieve an optimized mapping strategy for tasks to the resources, a balance between local and global search plays an effective role. The inertia weight is an important control attribute to effectively adjust the local and global search process. There are many inertia weight strategies; however, the existing approaches still require fine-tuning to achieve optimum scheduling. The selection of a suitable inertia weight strategy is also an important factor. This paper contributed an adaptive Particle Swarm Optimisation (PSO) based task scheduling approach that reduces the task execution time, and increases throughput and Average Resource Utilization Ratio (ARUR). Moreover, an adaptive inertia weight strategy namely Linearly Descending and Adaptive Inertia Weight (LDAIW) is introduced. The proposed scheduling approach provides a better balance between local and global search leading to an optimized task scheduling. The performance of the proposed approach has been evaluated and compared against five renown PSO based inertia weight strategies concerning makespan and throughput. The experiments are then extended and compared the proposed approach against the other four renowned meta-heuristic scheduling approaches. Analysis of the simulated experimentation reveals that the proposed approach attained up to 10%, 12% and 60% improvement for makespan, throughput and ARUR respectively.