Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; : 119446, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909946

RESUMEN

Rapid global urbanization and population growth have ignited an alarming surge in emerging contaminants in water bodies, posing health risks, even at trace concentrations. To address this challenge, novel water treatment and reuse technologies are required as current treatment systems are associated with high costs and energy requirements. These drawbacks provide additional incentives for the application of cost-effective and sustainable biomass-derived activated carbon, which possesses high surface area and low toxicity. Herein, we synthesized microporous activated carbon (MAC) and its magnetic derivative (m-MAC) from tannic acid to decaffeinate contaminated aqueous solutions. Detailed characterization using SEM, BET, and PXRD revealed a very high surface area (>1800 m2/g) and a highly porous, amorphous, heterogeneous sponge-like structure. Physicochemical and thermal analyses using XPS, TGA, and EDS confirmed thermal stability, unique surface moieties, and homogeneous elemental distribution. High absorption performance (>96 %) and adsorption capacity (287 and 394 mg/g) were recorded for m-MAC and MAC, respectively. Mechanistic studies showed that the sorption of caffeine is in tandem with multilayer and chemisorptive mechanisms, considering the models' correlation and error coefficients. π-π stacking and hydrogen bonding were among the interactions that could facilitate MAC-Caffeine and m-MAC-Caffeine bonding interactions. Regeneration and reusability experiments revealed adsorption efficiency ranging from 90.5-98.4 % for MAC and 88.6-93.7 % for m-MAC for five cycles. Our findings suggest that MAC and its magnetic derivative are effective for caffeine removal, and potentially other organic contaminants with the possibility of developing commercially viable and cost-effective water polishing tools.

2.
Adv Healthc Mater ; 13(3): e2301894, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37922888

RESUMEN

Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.


Asunto(s)
Nanocompuestos , Calidad de Vida , Animales , Ratones , Materiales Biocompatibles , Diferenciación Celular , Colágeno , Proyección Neuronal
3.
Nanotechnology ; 35(1)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37757783

RESUMEN

Carbon dots (CDs) have garnered significant interest for their potential use in multiple applications due to their size, fluorescent properties, high photostability, low toxicity and biocompatibility. CDs can be tailored for specific needs, as they can be synthesized with diverse precursors and techniques for functionalization. Since the applications of CDs are rapidly expanding, this review highlights recent developments in this burgeoning field. Specifically, we describe advances in CD synthesis tailored for applications that include pH and temperature sensing, biochemical analysis, and bioimaging. We also discuss various challenges and practical solutions that will drive CD-based research forward. Challenges include the lack of standardized synthesis and purification methods for CDs, the lack of clarity regarding their mechanism of action, and procedural flaws in their applications. In conclusion, we provide recommendations for collaboration among disciplines to bridge existing knowledge gaps and address the key challenges required for CDs to be fully commercialized.

4.
Sensors (Basel) ; 23(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299928

RESUMEN

Glyphosate is a broad-spectrum pesticide used in crops and is found in many products used by industry and consumers. Unfortunately, glyphosate has been shown to have some toxicity toward many organisms found in our ecosystems and has been reported to have carcinogenic effects on humans. Hence, there is a need to develop novel nanosensors that are more sensitive and facile and permit rapid detection. Current optical-based assays are limited as they rely on changes in signal intensity, which can be affected by multiple factors in the sample. Herein, we report the development of a dual emissive carbon dot (CD) system that can be used to optically detect glyphosate pesticides in water at different pH levels. The fluorescent CDs emit blue and red fluorescence, which we exploit as a ratiometric self-referencing assay. We observe red fluorescence quenching with increasing concentrations of glyphosate in the solution, ascribed to the interaction of the glyphosate pesticide with the CD surface. The blue fluorescence remains unaffected and serves as a reference in this ratiometric approach. Using fluorescence quenching assays, a ratiometric response is observed in the ppm range with detection limits as low as 0.03 ppm. Our CDs can be used to detect other pesticides and contaminants in water, as cost-effective and simple environmental nanosensors.


Asunto(s)
Plaguicidas , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Agua , Colorantes Fluorescentes/química , Carbono/química , Ecosistema , Plaguicidas/análisis , Glifosato
5.
Small ; 19(31): e2300541, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37058095

RESUMEN

Biodiesel remains one of the most promising alternatives to replace fossil fuel-derived petrodiesel. Nonetheless, conventional biodiesel synthesis relies on homogeneous alkali-based catalysts that involve long and tedious purification steps , increasing biodiesel production costs. Heterogeneous catalysts have emerged as promising alternatives to circumvent these drawbacks, as they can easily be recovered and reused. Herein, polymeric carbon nitride dots and nanosheets are synthesized through a solid-phase reaction between urea and sodium citrate. Their morphology and surface chemistry are tuned by varying the precursor's ratio, and the materials are investigated as catalysts in the transesterification reaction of canola oil to biodiesel. A conversion of > 98% is achieved using a 5 wt% catalyst loading, oil to methanol ratio of 1:36 at 90 °C for 4 h, with the performance maintained over at least five reuse cycles. In addition, the effect of the transesterification reaction parameters on the reaction kinetics is evaluated, which follows a pseudo-first-order (PFO) regime. Combined with a deep understanding of the catalyst's surface, these results have allowed us to propose a reaction mechanism similar to the one observed for homogenous alkali catalysts. These carbon nitride-based nanoparticles offer a metal-free and cost-effective alternative to conventional homogeneous and metal-based heterogeneous catalysts.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121444, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35660143

RESUMEN

The post-translational modification of amino acid plays a critical role in normal and diseased biological states. Specifically, nitrotyrosine (nTyr) has been linked to diseases, including neurodegeneration, among others. Hence, alternative methods are required for detection and differentiation of nTyr from other structurally similar analogues, such as Tyrosine (Tyr) or phosphotyrosine (pTyr). Herein, the selective detection of nTyr, over other congeners, was achieved by using dual-fluorescent carbon dots (CDs) in buffered solution, artificial saliva, bovine serum albumin and diluted equine serum. The nTyr induced fluorescence quenching of the blue and red emissions of CDs, in the 20-105 µM linear range, and with the limit of detection (LOD) at 34 µM, which was well below the physiological concentration required for detection. The sensor was functional at biological pH values, with optimal quenching efficiency at basic pH. The sensor was highly selective for nTyr even in the presence of common biological interferences (metal cations, organic anions, amino acids, nucleosides and other biologicals). The mechanism of quenching (a combination of static and dynamic) was ascribed to the nonradiative energy transfer, due to electronic overlap between nTyr absorbance and CDs fluorescence emission, and electron transfer from excited CDs state to nTyr as an electron acceptor. The dual-fluorescent CDs represent viable sensors for key biological modifications, and their selectivity and sensitivity may be further improved through tailored chemical synthesis of CDs, such as tunable surface chemistry to promote selective recognition of analyte of interest.


Asunto(s)
Carbono , Puntos Cuánticos , Animales , Carbono/química , Colorantes Fluorescentes/química , Caballos , Límite de Detección , Puntos Cuánticos/química , Espectrometría de Fluorescencia , Tirosina/análogos & derivados
7.
J Colloid Interface Sci ; 606(Pt 1): 67-76, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34388574

RESUMEN

Carbon dots have garnered significant attention owing to their versatile and highly tunable optical properties; however, the origins and the underlying mechanism remains a subject of debate especially for dual fluorescent systems. Here, we have prepared carbon dots from glutathione and formamide precursors via a one-pot solvothermal synthesis. Steady state and dynamic techniques indicate that these dual fluorescent dots possess distinct emissive carbon-core and a molecular states, which are responsible for the blue and red optical signatures, respectively. To further glean information into the fluorescence mechanism, electrochemical analysis was used to measure the bandgaps of the two fluorescent states, while femtosecond transient absorption spectroscopy evidenced the two-state model based on the observed heterogeneity and bimodal spectral distribution. Our findings provide novel and fundamental insights on the optical properties of dual fluorescent dots, which can translate to more effective and targeted application development particularly in bioimaging, multiplexed sensing and photocatalysis.


Asunto(s)
Carbono , Puntos Cuánticos , Glutatión , Espectrometría de Fluorescencia
8.
Sensors (Basel) ; 21(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671164

RESUMEN

Overexposure to metals has significant adverse effects on human and animal health coupled with nefarious consequences to the environment. Sensitive tools to measure low contaminant levels exist, but often come at a high cost and require tedious procedures. Thus, there exists a need for the development of affordable metal sensors that can offer high sensitivity and selectivity while being accessible on a global scale. Here, carbon dots, prepared in a one-pot synthesis using glutathione and formamide, have been developed as dual fluorescent metal sensing probes. Following extensive characterization of their physico-chemical properties, it is demonstrated that dual fluorescence can be exploited to build a robust ratiometric sensor with low-ppb detection sensitivity in water. This investigation shows that these optical probes are selective for Pb2+ and Hg2+ ions. Using steady-state and dynamic optical characterization techniques, coupled with hard and soft acid-base theory, the underlying reason for this selective behavior was identified. These findings shed light on the nature of metal-carbon dot interactions, which can be used to tailor their properties to target specific metal ions. Finally, these findings can be applicable to other fluorescent nanoparticle systems that are targeted for development as metal sensors.

9.
RSC Adv ; 11(41): 25354-25363, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35478913

RESUMEN

Carbon dots (CDs) are nanoparticles with tunable physicochemical and optical properties. Their resistance to photobleaching and relatively low toxicity render them attractive alternatives to fluorescent dyes and heavy metal-based quantum dots in the fields of bioimaging, sensing, catalysis, solar cells, and light-emitting diodes, among others. Moreover, they have garnered considerable attention as they lend themselves to green synthesis methods. Increasingly, one-pot syntheses comprising exclusively of renewable raw materials or renewable refined compounds are gaining favor over traditional approaches that rely on harsh chemicals and energy intensive conditions. The field of green CD synthesis is developing rapidly; however, challenges persist in ensuring the consistency of their properties (e.g., fluorescence quantum yield) relative to conventional preparation methods. This has mostly limited their use to sensing and bioimaging, leaving opportunities for development in optoelectronic applications. Herein, we discuss the most common green CD synthesis and purification methods reported in the literature and the renewable precursors used. The physical, chemical, and optical properties of the resulting green-synthesized CDs are critically reviewed, followed by a detailed description of their applications in sensing, bioimaging, biomedicine, inks, and catalysis. We conclude with an outlook on the future of green CD synthesis. Future research efforts should address the broad knowledge gap between CDs synthesized from renewable versus non-renewable precursors, focusing on discrepancies in their physical, chemical, and optical properties. The development of cost effective, safe, and sustainable green CDs with tunable properties will broaden their implementation in largely untapped applications, which include drug delivery, photovoltaics, catalysis, and more.

10.
Phys Chem Chem Phys ; 22(29): 16595-16605, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32666968

RESUMEN

Passivation of carbon dots via heteroatom doping has been shown to enhance their optical properties and tune their fluorescence signature. Additionally, the incorporation of polymeric precursors in carbon dot synthesis has gained considerable interest with benefits to biological applications namely bioimaging, drug delivery and sensing, among others. In order to combine the desirable attributes of both, fluorescence enhancement and increased biocompatibility, polymers composed of high aromaticity and nitrogen content can be used as efficient carbon dot passivating agents. Here, the synthesis of fluorescent polymer-passivated carbon dots was developed through a microwave-assisted pyrolysis reaction of galactose, citric acid and polydopamine. Passivation of the dots with polydopamine induces a 90 nm red-shift in the fluorescence maxima from 420 to 510 nm. Moreover, passivation results in excitation-independent fluorescence and a 3.5-fold increase in fluorescence quantum yield, which increases from 1.3 to 4.6%. The application of the carbon dots as imaging probes was investigated in in vitro and in vivo model systems. Cytotoxicity studies in J774 and CHO-K1 cell lines revealed reduced cell toxicity for the polydopamine-passivated carbon dots in comparison to their unpassivated counterpart. In BALB/c mice, biodistribution studies demonstrated that regardless of surface passivation, the dots predominantly remained in the circulatory system 90 minutes post inoculation suggesting their potential use for cardiovascular therapies.


Asunto(s)
Carbono/química , Carbono/metabolismo , Indoles/química , Indoles/metabolismo , Rotación Óptica , Polímeros/química , Polímeros/metabolismo , Animales , Línea Celular , Cricetulus , Ratones , Ratones Endogámicos BALB C , Puntos Cuánticos , Distribución Tisular
11.
Biomed Opt Express ; 11(4): 2254-2267, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32341881

RESUMEN

In view of minimally-invasive clinical interventions, laser tissue soldering assisted by plasmonic nanoparticles is emerging as an appealing concept in surgical medicine, holding the promise of surgeries without sutures. Rigorous monitoring of the plasmonically-heated solder and the underlying tissue is crucial for optimizing the soldering bonding strength and minimizing the photothermal damage. To this end, we propose a non-invasive, non-contact, and non-ionizing modality for monitoring nanoparticle-assisted laser-tissue interaction and visualizing the localized photothermal damage, by taking advantage of the unique sensitivity of terahertz radiation to the hydration level of biological tissue. We demonstrate that terahertz radiation can be employed as a versatile tool to reveal the thermally-affected evolution in tissue, and to quantitatively characterize the photothermal damage induced by nanoparticle-assisted laser tissue soldering in three dimensions. Our approach can be easily extended and applied across a broad range of clinical applications involving laser-tissue interaction, such as laser ablation and photothermal therapies.

12.
RSC Adv ; 10(53): 32202-32210, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35518167

RESUMEN

Chirality remains a critical consideration in drug development and design, as well as in applications of enantioselective recognition and sensing. However, the preparation of chiral nanomaterials requires extensive post synthetic modifications with a chiral agent, coupled with extensive purification. This limits the use and application of chiral nanomaterials. Herein, we report a facile, one-step microwave-assisted synthesis of chiral carbon dots through the reaction of l- and d-cysteine amino acid precursors and citric acid. We modulated the synthetic parameters to preserve and tune the residual chiral properties of the dots and demonstrate that the reaction conditions play a critical role in dictating the chiral behaviour of the dots. Finally, in a proof of concept application we demonstrated that the synthesized carbon dots, particularly d-carbon dots inhibit bacterial growth at a lower concentration than l-carbon dots. By varying bacterial strains and chirality of the carbon dots, concentrations ranging from 0.25-4 mg mL-1 of the nanoparticles were required to inhibit microbial growth. The ability to preserve and tune chirality during synthesis can open up novel avenues and research directions for the development of enantioselective materials, as well as antibacterial films and surfaces.

13.
ACS Omega ; 4(12): 14955-14961, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31552336

RESUMEN

Bismuth metallic nanoparticles have evoked considerable interest in catalysis owing to their small size, high surface area-to-volume ratio, and low toxicity. However, the need for toxic reductants and organic solvents in their synthesis often limits their desirability for application development. Here, we describe a green strategy to synthesize bismuth nanodots via the redox reactions between bismuth nitrate and d-glucose, in the presence of poly(vinylpyrrolidone) in the basic aqueous phase. Both reagents play a crucial role in the formation of monodisperse bismuth nanodots acting as mild reducing and capping agents, respectively. We further demonstrate that the catalytic activity of these dots via the successful reduction of the environmental contaminant 4-nitrophenol to its useful 4-aminophenol analogue requiring only 36 µg/mL nanocatalyst for 20 mM of the substrate. Moreover, they can be recovered and recycled in multiple reactions before the onset of an appreciable loss of catalytic activity. The proposed facile synthetic route and inexpensive matrix materials lead the way to access bismuth nanodots for both the fundamental study of reactions and their industrial catalysis applications.

14.
Nanoscale Adv ; 1(1): 105-113, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36132472

RESUMEN

Highly sensitive non-invasive temperature sensing is critical for studying fundamental biological processes and applications in medical diagnostics. Nanoscale-based thermometers are promising non-invasive probes for precise temperature sensing with subcellular resolution. However, many of these systems have limitations as they rely on fluorescence intensity changes, deconvolution of peaks, or the use of hybrid systems to measure thermal events. To address this, we developed a fluorescence-based ratiometric temperature sensing approach using carbon dots prepared via microwave synthesis. These dots possess dual fluorescence signatures in the blue and red regions of the spectrum. We observed a linear response as a function of temperature in the range of 5-60 °C with a thermal resolution of 0.048 K-1 and thermal sensitivity of 1.97% C-1. Temperature-dependent fluorescence was also observed in HeLa cancer cells over a range of 32-42 °C by monitoring changes in the red-to-blue fluorescence signatures. We demonstrate that the ratiometric approach is superior to intensity-based thermal sensing because it is independent of the intracellular concentration of the optical probe. These findings suggest that dual-emitting carbon dots can be an effective tool for in vitro and possibly in vivo fluorescence nanothermometry.

15.
J Am Chem Soc ; 138(3): 1078-83, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26708288

RESUMEN

Lanthanide-doped upconverting nanoparticles (UCNPs) have emerged as excellent nanotransducers for converting longer wavelength near-infrared (NIR) light to shorter wavelengths spanning the ultraviolet (UV) to the visible (Vis) regions of the spectrum via a multiphoton absorption process, known as upconversion. Here, we report the development of NIR to UV-Vis-NIR UCNPs consisting of LiYF4:Yb(3+)/Tm(3+)@SiO2 individually coated with a 10 ± 2 nm layer of chitosan (CH) hydrogel cross-linked with a photocleavable cross-linker (PhL). We encapsulated fluorescent-bovine serum albumin (FITC-BSA) inside the gel. Under 980 nm excitation, the upconverted UV emission cleaves the PhL cross-links and instantaneously liberates the FITC-BSA under 2 cm thick tissue. The release is immediately arrested if the excitation source is switched off. The upconverted NIR light allows for the tracking of particles under the tissue. Nucleus pulposus (NP) cells cultured with UCNPs are viable both in the presence and in the absence of laser irradiation. Controlled drug delivery of large biomolecules and deep tissue imaging make this system an excellent theranostic platform for tissue engineering, biomapping, and cellular imaging applications.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Sistemas de Liberación de Medicamentos , Hidrogeles/química , Rayos Infrarrojos , Nanopartículas/química , Fotólisis , Nanomedicina Teranóstica , Animales , Bovinos , Supervivencia Celular , Células Cultivadas , Quitosano/química , Fluorescencia , Fluoruros/química , Litio/química , Neuronas/citología , Neuronas/metabolismo , Albúmina Sérica Bovina/química , Dióxido de Silicio/química , Tecnecio/química , Itrio/química
16.
Nanoscale ; 7(26): 11255-62, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26067274

RESUMEN

To design a biodegradable hydrogel as cell support, one should know its in vivo degradation rate. A technique commonly used to track gel degradation is fluorescence spectroscopy. However, the fluorescence from conventional fluorophores quickly decays, and the fluorophores are often moderately cytotoxic. Most importantly, they require ultraviolet or visible (UV-Vis) light as the excitation source, which cannot penetrate deeply through biological tissues. Lanthanide-doped upconverting nanoparticles (UCNPs) are exciting alternatives to conventional fluorophores because they can convert near-infrared (NIR) to UV-Vis-NIR light via a sequential multiphoton absorption process referred to as upconversion. NIR light can penetrate up to few cm inside tissues, thus making these UCNPs much better probes than conventional fluorophores for in vivo monitoring. Also, UCNPs have narrow emission bands, high photoluminescence (PL) signal-to-noise ratio, low cytotoxicity and good physical and chemical stability. Here, we show a nanocomposite system consisting of a biodegradable, in situ thermogelling injectable hydrogel made of chitosan and hyaluronic acid encapsulating silica-coated LiYF4:Yb(3+)/Tm(3+) UCNPs. We use these UCNPs as photoluminescent tags to monitor the gel degradation inside live, cultured intervertebral discs (IVDs) over a period of 3 weeks. PL spectroscopy and NIR imaging show that NIR-to-NIR upconversion of LiYF4:Yb(3+)/Tm(3+)@SiO2 UCNPs allows for tracking of the gel degradation in living tissues. Both in vitro and ex vivo release of UCNPs follow a similar trend during the first 5 days; after this time, ex vivo release becomes faster than in vitro, indicating a faster gel degradation ex vivo. Also, the amount of released UCNPs in vitro increases continuously up to 3 weeks, while it plateaus after 15 days inside the IVDs showing a homogenous distribution of UCNPs throughout the IVD tissue. This non-invasive optical method for real time, live tissue imaging holds great potential for tissue analysis, biomapping and bioimaging applications.

17.
Biomacromolecules ; 16(1): 364-73, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25474498

RESUMEN

Once manufactured or implanted, polyester release kinetics tend to be fixed with little modulation possible for optimal local chemical concentrations. Here, a typical implantable polyester was fabricated into thin films (∼50 µm thick) with additives of photocatalytic ZnO nanoparticles, lanthanide-doped LiYF4 nanoparticle upconverting nanoparticles, or a combination thereof and irradiated with either 6 mW ultraviolet (365 nm) light emitting diodes or 50 mW near-infrared (980 nm) laser diodes to induce polymer photooxidation. Irradiated polyester films with the aforementioned photoadditives had enhanced release kinetics up to 30 times more than nonirradiated, neat films with extended release times of 28 days. Near-infrared, ZnO-mediated photocatalysis had the highest light on/light off ratio release kinetics of 15.4, while doped LiYF4 upconversion nanoparticles paired with ZnO nanoparticles had the highest linear R(2) correlation of 0.98 with respect to duty cycle and release kinetics. Future applications of the technology will aim toward modulation of previously developed polymeric reagents/drugs for real-time, feedback-optimized release.


Asunto(s)
Lantano/química , Nanopartículas del Metal/química , Polímeros/química , Óxido de Zinc/química , Cinética , Procesos Fotoquímicos
19.
Adv Healthc Mater ; 2(11): 1478-88, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23666643

RESUMEN

Near-infrared (NIR)-to-NIR upconverting NaY(Gd)F4 :Tm(3+) ,Yb(3+) paramagnetic nanoparticles (NPs) are efficiently detected by NIR imaging techniques. As they contain Gd(3+) ions, they also provide efficient "positive" contrast in magnetic resonance imaging (MRI). Water-dispersible small (≈25 nm, "S-") and ultrasmall (<5 nm diam., "US-") NaY(Gd)F4 :Tm(3+) ,Yb(3+) NPs are synthesized by thermal decomposition and capped with citrate. The surface of citrate-coated US-NPs shows sodium depletion and high Gd elemental ratios, as confirmed by a comparative X-ray photoelectron spectroscopy (XPS)/neutron absorption analysis study. US-NaGd0.745 F4 :Tm0.005 ,Yb0.25 NPs have hydrodynamic diameters close to that measured by TEM, with the lowest relaxometric ratios (r2 /r1 = 1.18) reported for NaGdF4 nanoparticle suspensions (r1 = 3.37 mM(-1) s(-1) at 1.4 T and 37 °C). Strong relaxivity peaks in the range of 20 (0.47 T) - 300 MHz (7.05 T) are revealed in nuclear magnetic resonance dispersion profiles, with high r2 /r1 ratios at increasing field strengths for S-NPs. This indicates the superiority of US-NPs over S-NPs for achieving high positive contrast at clinical MRI field strengths. I.-v. injected citrate-coated US-NPs evidence long blood retention times (>90 min) in mice. Biodistribution studies (48 h, 8 d) show elimination through the reticuloendothelial and urinary systems, similarly to other citrate-capped US-NP systems. In summary, upconverting NaY(Gd)F4 :Tm(3+) ,Yb(3+) nanoparticles have promising luminescent, relaxometric and blood-retention properties for dual MRI/optical imaging.


Asunto(s)
Vasos Sanguíneos/patología , Fluoruros , Gadolinio , Imagen por Resonancia Magnética , Nanopartículas , Imagen Óptica , Procesamiento de Señales Asistido por Computador , Animales , Medios de Contraste , Ratones , Nanopartículas/ultraestructura , Espectroscopía de Fotoelectrones , Suspensiones , Distribución Tisular
20.
Adv Healthc Mater ; 2(11): 1477, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24574195

RESUMEN

Tripositive gadolinium-ion doped NIR-to-NIR upconverting paramagnetic nanoparticles are efficiently detected are NIR imaging techniques but can also provide efficient "positive" contrast in MRI. On page 1478 John A. Capobianco, Marc-André Fortin, and co-workers show that citrate-coated nanoparticles present the lowest relaxometric ratios reported for NaGdF4 nanoparticle suspensions. IV-injected nanoparticles evidence long blood retention times in mice while biodistribution studies show elimination through the reticuloendothelial and urinary systems.


Asunto(s)
Vasos Sanguíneos/patología , Gadolinio , Imagen por Resonancia Magnética , Nanopartículas , Imagen Óptica , Procesamiento de Señales Asistido por Computador , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...