Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
Allergy ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003568

RESUMEN

Pyroptosis is an inflammatory form of programmed cell death that is distinct from necrosis and apoptosis. Pyroptosis is primarily mediated by the gasdermin family of proteins (GSDMA-E and PVJK), which, when activated by proteolytic cleavage, form pores in the plasma membrane, leading to cell death. While much of the past research on pyroptosis has focused on its role in cancer, metabolic disorders, and infectious diseases, recent experimental and observational studies have begun to implicate pyroptosis in allergic diseases. These studies suggest that gasdermin-mediated pyroptosis contributes to the development of allergic conditions and could offer novel targets for therapy. Here, we review our current understanding of pyroptosis with an emphasis on the role of gasdermins as executioners of pyroptosis and potential mediators to allergic disease. We highlight new discoveries that establish a mechanistic link between the biochemical actions of gasdermins and the onset of allergic diseases. Additionally, we discuss how pyroptosis and gasdermins might contribute to the dysfunction of epithelial barrier, a key factor believed to initiate the progression of various allergic diseases.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38971567

RESUMEN

The traditional healthcare model is focused on diseases (medicine and natural science) and does not acknowledge patients' resources and abilities to be experts in their own life based on their lived experiences. Improving healthcare safety, quality and coordination, as well as quality of life, are important aims in the care of patients with chronic conditions. Person-centred care needs to ensure that people's values and preferences guide clinical decisions. This paper reviews current knowledge to develop (i) digital care pathways for rhinitis and asthma multimorbidity and (ii) digitally-enabled person-centred care (1). It combines all relevant research evidence, including the so-called real-world evidence, with the ultimate goal to develop digitally-enabled, patient-centred care. The paper includes (i) Allergic Rhinitis and its Impact on Asthma (ARIA), a two-decade journey, (ii) Grading of Recommendations, Assessment, Development and Evaluation (GRADE), the evidence-based model of guidelines in airway diseases, (iii) mHealth impact on airway diseases, (iv) from guidelines to digital care pathways, (v) embedding Planetary Health, (vi) novel classification of rhinitis and asthma, (vi) embedding real-life data with population-based studies, (vii) the ARIA-EAACI strategy for the management of airway diseases using digital biomarkers, (viii) Artificial Intelligence, (ix) the development of digitally-enabled ARIA Person-Centred Care and (x) the political agenda. The ultimate goal is to propose ARIA 2024 guidelines centred around the patient in order to make them more applicable and sustainable.

3.
CHEST Pulm ; 2(2)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38993972

RESUMEN

BACKGROUND: Short-term increases in air pollution are associated with poor asthma and COPD outcomes. Short-term elevations in fine particulate matter (PM2.5) due to wildfire smoke are becoming more common. RESEARCH QUESTION: Are short-term increases in PM2.5 and ozone in wildfire season and in winter inversion season associated with a composite of emergency or inpatient hospitalization for asthma and COPD? STUDY DESIGN AND METHODS: Case-crossover analyses evaluated 63,976 and 18,514 patients hospitalized for primary discharge diagnoses of asthma and COPD, respectively, between January 1999 and March 2022. Patients resided on Utah's Wasatch Front where PM2.5 and ozone were measured by Environmental Protection Agency-based monitors. ORs were calculated using Poisson regression adjusted for weather variables. RESULTS: Asthma risk increased on the same day that PM2.5 increased during wildfire season (OR, 1.057 per + 10 µg/m3; 95% CI, 1.019-1.097; P = .003) and winter inversions (OR, 1.023 per +10 µg/m3; 95% CI, 1.010-1.037; P = .0004). Risk decreased after 1 week, but during wildfire season risk rebounded at a 4-week lag (OR, 1.098 per +10 µg/m3; 95% CI, 1.033-1.167). Asthma risk for adults during wildfire season was highest in the first 3 days after PM2.5 increases, but for children, the highest risk was delayed by 3 to 4 weeks. PM2.5 exposure was weakly associated with COPD hospitalization. Ozone exposure was not associated with elevated risks. INTERPRETATION: In a large urban population, short-term increases in PM2.5 during wildfire season were associated with asthma hospitalization, and the effect sizes were greater than for PM2.5 during inversion season.

4.
Allergy ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989779

RESUMEN

BACKGROUND: Antigen-specific memory B cells play a key role in the induction of desensitization and remission to food allergens in oral immunotherapy and in the development of natural tolerance (NT). Here, we characterized milk allergen Bos d 9-specific B cells in oral allergen-specific immunotherapy (OIT) and in children spontaneously outgrowing cow's milk allergy (CMA) due to NT. METHODS: Samples from children with CMA who received oral OIT (before, during, and after), children who naturally outgrew CMA (NT), and healthy individuals were received from Stanford biobank. Bos d 9-specific B cells were isolated by flow cytometry and RNA-sequencing was performed. Protein profile of Bos d 9-specific B cells was analyzed by proximity extension assay. RESULTS: Increased frequencies of circulating milk allergen Bos d 9-specific B cells were observed after OIT and NT. Milk-desensitized subjects showed the partial acquisition of phenotypic features of remission, suggesting that desensitization is an earlier stage of remission. Within these most significantly expressed genes, IL10RA and TGFB3 were highly expressed in desensitized OIT patients. In both the remission and desensitized groups, B cell activation-, Breg cells-, BCR-signaling-, and differentiation-related genes were upregulated. In NT, pathways associated with innate immunity characteristics, development of marginal zone B cells, and a more established suppressor function of B cells prevail that may play a role in long-term tolerance. The analyses of immunoglobulin heavy chain genes in specific B cells demonstrated that IgG2 in desensitization, IgG1, IgA1, IgA2, IgG4, and IgD in remission, and IgD in NT were predominating. Secreted proteins from allergen-specific B cells revealed higher levels of regulatory cytokines, IL-10, and TGF-ß after OIT and NT. CONCLUSION: Allergen-specific B cells are essential elements in regulating food allergy towards remission in OIT-received and naturally resolved individuals.

5.
Allergy ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011970

RESUMEN

Exposure to toxic substances, introduced into our daily lives during industrialization and modernization, can disrupt the epithelial barriers in the skin, respiratory, and gastrointestinal systems, leading to microbial dysbiosis and inflammation. Athletes and physically active individuals are at increased risk of exposure to agents that damage the epithelial barriers and microbiome, and their extreme physical exercise exerts stress on many organs, resulting in tissue damage and inflammation. Epithelial barrier-damaging substances include surfactants and enzymes in cleaning products, laundry and dishwasher detergents, chlorine in swimming pools, microplastics, air pollutants such as ozone, particulate matter, and diesel exhaust. Athletes' high-calorie diet often relies on processed foods that may contain food emulsifiers and other additives that may cause epithelial barrier dysfunction and microbial dysbiosis. The type of the material used in the sport equipment and clothing and their extensive exposure may increase the inflammatory effects. Excessive travel-related stress, sleep disturbances and different food and microbe exposure may represent additional factors. Here, we review the detrimental impact of toxic agents on epithelial barriers and microbiome; bring a new perspective on the factors affecting the health and performance of athletes and physically active individuals.

6.
Curr Allergy Asthma Rep ; 24(7): 331-345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38884832

RESUMEN

PURPOSE OF REVIEW: Modernization and Westernization in industrialized and developing nations is associated with a substantial increase in chronic noncommunicable diseases. This transformation has far-reaching effects on lifestyles, impacting areas such as economics, politics, social life, and culture, all of which, in turn, have diverse influences on public health. Loss of contact with nature, alternations in the microbiota, processed food consumption, exposure to environmental pollutants including chemicals, increased stress and decreased physical activity jointly result in increases in the frequency of inflammatory disorders including allergies and many autoimmune and neuropsychiatric diseases. This review aims to investigate the relationship between Western lifestyle and inflammatory disorders. RECENT FINDINGS: Several hypotheses have been put forth trying to explain the observed increases in these diseases, such as 'Hygiene Hypothesis', 'Old Friends', and 'Biodiversity and Dysbiosis'. The recently introduced 'Epithelial Barrier Theory' incorporates these former hypotheses and suggests that toxic substances in cleaning agents, laundry and dishwasher detergents, shampoos, toothpastes, as well as microplastic, packaged food and air pollution damage the epithelium of our skin, lungs and gastrointestinal system. Epithelial barrier disruption leads to decreased biodiversity of the microbiome and the development of opportunistic pathogen colonization, which upon interaction with the immune system, initiates local and systemic inflammation. Gaining a deeper comprehension of the interplay between the environment, microbiome and the immune system provides the data to assist with legally regulating the usage of toxic substances, to enable nontoxic alternatives and to mitigate these environmental challenges essential for fostering a harmonious and healthy global environment.


Asunto(s)
Hipersensibilidad , Desarrollo Industrial , Estilo de Vida , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/etiología , Exposición a Riesgos Ambientales/efectos adversos
8.
Proc Natl Acad Sci U S A ; 121(22): e2320338121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768355

RESUMEN

Electric school buses have been proposed as an alternative to reduce the health and climate impacts of the current U.S. school bus fleet, of which a substantial share are highly polluting old diesel vehicles. However, the climate and health benefits of electric school buses are not well known. As they are substantially more costly than diesel buses, assessing their benefits is needed to inform policy decisions. We assess the health benefits of electric school buses in the United States from reduced adult mortality and childhood asthma onset risks due to exposure to ambient fine particulate matter (PM2.5). We also evaluate climate benefits from reduced greenhouse-gas emissions. We find that replacing the average diesel bus in the U.S. fleet in 2017 with an electric bus yields $84,200 in total benefits. Climate benefits amount to $40,400/bus, whereas health benefits amount to $43,800/bus due to 4.42*10-3 fewer PM2.5-attributable deaths ($40,000 of total) and 7.42*10-3 fewer PM2.5-attributable new childhood asthma cases ($3,700 of total). However, health benefits of electric buses vary substantially by driving location and model year (MY) of the diesel buses they replace. Replacing old, MY 2005 diesel buses in large cities yields $207,200/bus in health benefits and is likely cost-beneficial, although other policies that accelerate fleet turnover in these areas deserve consideration. Electric school buses driven in rural areas achieve small health benefits from reduced exposure to ambient PM2.5. Further research assessing benefits of reduced exposure to in-cabin air pollution among children riding buses would be valuable to inform policy decisions.


Asunto(s)
Contaminación del Aire , Vehículos a Motor , Material Particulado , Instituciones Académicas , Emisiones de Vehículos , Humanos , Estados Unidos , Emisiones de Vehículos/prevención & control , Material Particulado/efectos adversos , Asma/epidemiología , Asma/etiología , Asma/mortalidad , Niño , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Electricidad , Adulto
9.
Allergy ; 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783343

RESUMEN

To inform the clinical practice guidelines' recommendations developed by the European Academy of Allergy and Clinical Immunology systematic reviews (SR) assessed using GRADE on the impact of environmental tobacco smoke (ETS) and active smoking on the risk of new-onset asthma/recurrent wheezing (RW)/low lung function (LF), and on asthma-related outcomes. Only longitudinal studies were included, almost all on combustion cigarettes, only one assessing e-cigarettes and LF. According to the first SR (67 studies), prenatal ETS increases the risk of RW (moderate certainty evidence) and may increase the risk of new-onset asthma and of low LF (low certainty evidence). Postnatal ETS increases the risk of new-onset asthma and of RW (moderate certainty evidence) and may impact LF (low certainty evidence). Combined in utero and postnatal ETS may increase the risk of new-onset asthma (low certainty evidence) and increases the risk of RW (moderate certainty evidence). According to the second SR (24 studies), ETS increases the risk of severe asthma exacerbations and impairs asthma control and LF (moderate certainty evidence). According to the third SR (25 studies), active smoking increases the risk of severe asthma exacerbations and of suboptimal asthma control (moderate certainty evidence) and may impact asthma-related quality-of-life and LF (low certainty evidence).

10.
Sci Adv ; 10(18): eadm8680, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701214

RESUMEN

Gas and propane stoves emit nitrogen dioxide (NO2) pollution indoors, but the exposures of different U.S. demographic groups are unknown. We estimate NO2 exposure and health consequences using emissions and concentration measurements from >100 homes, a room-specific indoor air quality model, epidemiological risk parameters, and statistical sampling of housing characteristics and occupant behavior. Gas and propane stoves increase long-term NO2 exposure 4.0 parts per billion volume on average across the United States, 75% of the World Health Organization's exposure guideline. This increased exposure likely causes ~50,000 cases of current pediatric asthma from long-term NO2 exposure alone. Short-term NO2 exposure from typical gas stove use frequently exceeds both World Health Organization and U.S. Environmental Protection Agency benchmarks. People living in residences <800 ft2 in size incur four times more long-term NO2 exposure than people in residences >3000 ft2 in size; American Indian/Alaska Native and Black and Hispanic/Latino households incur 60 and 20% more NO2 exposure, respectively, than the national average.


Asunto(s)
Contaminación del Aire Interior , Dióxido de Nitrógeno , Propano , Dióxido de Nitrógeno/análisis , Humanos , Estados Unidos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Vivienda , Culinaria , Contaminantes Atmosféricos/análisis
11.
Ann Allergy Asthma Immunol ; 133(1): 20-27, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648975

RESUMEN

Increased fossil fuel use has increased carbon dioxide concentrations leading to global warming and climate change with increased frequency and intensity of extreme weather events such as thunderstorms, wildfires, droughts, and heat waves. These changes increase the risk of adverse health effects for all human beings. However, these experiences do not affect everyone equally. Underserved communities, including people of color, the elderly, people living with chronic conditions, and socioeconomically disadvantaged groups, have greater vulnerability to the impacts of climate change. These vulnerabilities are a result of multiple factors such as disparities in health care, lower educational status, and systemic racism. These social inequities are exacerbated by extreme weather events, which act as threat multipliers increasing disparities in health outcomes. It is clear that without human action, these global temperatures will continue to increase to unbearable levels creating an existential crisis. There is now global consensus that climate change is caused by anthropogenic activity and that actions to mitigate and adapt to climate change are urgently needed. The 2015 Paris Accord was the first truly global commitment that set goals to limit further warming. It also aimed to implement equity in action, founded on the principle of common but differentiated responsibilities. Meeting these goals requires individual, community, organizational, national, and global cooperation. Health care professionals, often in the frontline with firsthand knowledge of the health impacts of climate change, can play a key role in advocating for just and equitable climate change adaptation and mitigation policies.


Asunto(s)
Cambio Climático , Clima Extremo , Humanos , Poblaciones Vulnerables , Disparidades en Atención de Salud , Calentamiento Global
12.
Allergy ; 79(7): 1656-1686, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38563695

RESUMEN

The EAACI Guidelines on the impact of short-term exposure to outdoor pollutants on asthma-related outcomes provide recommendations for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management and for policymakers and regulators as an evidence-informed reference to help setting legally binding standards and goals for outdoor air quality at international, national and local levels. The Guideline was developed using the GRADE approach and evaluated outdoor pollutants referenced in the current Air Quality Guideline of the World Health Organization as single or mixed pollutants and outdoor pesticides. Short-term exposure to all pollutants evaluated increases the risk of asthma-related adverse outcomes, especially hospital admissions and emergency department visits (moderate certainty of evidence at specific lag days). There is limited evidence for the impact of traffic-related air pollution and outdoor pesticides exposure as well as for the interventions to reduce emissions. Due to the quality of evidence, conditional recommendations were formulated for all pollutants and for the interventions reducing outdoor air pollution. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but global measures for clean air are needed to achieve significant impact.


Asunto(s)
Contaminantes Atmosféricos , Asma , Exposición a Riesgos Ambientales , Asma/etiología , Asma/prevención & control , Humanos , Contaminantes Atmosféricos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos
13.
J Heart Lung Transplant ; 43(8): 1336-1347, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38670297

RESUMEN

BACKGROUND: Cardiac allograft vasculopathy (CAV) remains the leading cause of long-term graft failure and mortality after heart transplantation. Effective preventive and treatment options are not available to date, largely because underlying mechanisms remain poorly understood. We studied the potential role of leukotriene B4 (LTB4), an inflammatory lipid mediator, in the development of CAV. METHODS: We used an established preclinical rat CAV model to study the role of LTB4 in CAV. We performed syngeneic and allogeneic orthotopic aortic transplantation, after which neointimal proliferation was quantified. Animals were then treated with Bestatin, an inhibitor of LTB4 synthesis, or vehicle control for 30 days post-transplant, and evidence of graft CAV was determined by histology. We also measured serial LTB4 levels in a cohort of 28 human heart transplant recipients with CAV, 17 matched transplant controls without CAV, and 20 healthy nontransplant controls. RESULTS: We showed that infiltration of the arterial wall with macrophages leads to neointimal thickening and a rise in serum LTB4 levels in our rat model of CAV. Inhibition of LTB4 production with the drug Bestatin prevents development of neointimal hyperplasia, suggesting that Bestatin may be effective therapy for CAV prevention. In a parallel study of heart transplant recipients, we found nonsignificantly elevated plasma LTB4 levels in patients with CAV, compared to patients without CAV and healthy, nontransplant controls. CONCLUSIONS: This study provides key evidence supporting the role of the inflammatory cytokine LTB4 as an important mediator of CAV development and provides preliminary data suggesting the clinical benefit of Bestatin for CAV prevention.


Asunto(s)
Biomarcadores , Trasplante de Corazón , Leucotrieno B4 , Animales , Trasplante de Corazón/efectos adversos , Leucotrieno B4/sangre , Leucotrieno B4/metabolismo , Ratas , Masculino , Biomarcadores/metabolismo , Biomarcadores/sangre , Humanos , Modelos Animales de Enfermedad , Aloinjertos , Persona de Mediana Edad , Ratas Endogámicas Lew , Femenino , Neointima/patología
15.
JCI Insight ; 9(5)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456511

RESUMEN

Understanding the immune responses to SARS-CoV-2 vaccination is critical to optimizing vaccination strategies for individuals with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here, we comprehensively analyzed innate and adaptive immune responses in 19 patients with SLE receiving a complete 2-dose Pfizer-BioNTech mRNA vaccine (BNT162b2) regimen compared with a control cohort of 56 healthy control (HC) volunteers. Patients with SLE exhibited impaired neutralizing antibody production and antigen-specific CD4+ and CD8+ T cell responses relative to HC. Interestingly, antibody responses were only altered in patients with SLE treated with immunosuppressive therapies, whereas impairment of antigen-specific CD4+ and CD8+ T cell numbers was independent of medication. Patients with SLE also displayed reduced levels of circulating CXC motif chemokine ligands, CXCL9, CXCL10, CXCL11, and IFN-γ after secondary vaccination as well as downregulation of gene expression pathways indicative of compromised innate immune responses. Single-cell RNA-Seq analysis reveals that patients with SLE showed reduced levels of a vaccine-inducible monocyte population characterized by overexpression of IFN-response transcription factors. Thus, although 2 doses of BNT162b2 induced relatively robust immune responses in patients with SLE, our data demonstrate impairment of both innate and adaptive immune responses relative to HC, highlighting a need for population-specific vaccination studies.


Asunto(s)
COVID-19 , Lupus Eritematoso Sistémico , Humanos , Vacuna BNT162 , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Vacunación
17.
J Allergy Clin Immunol ; 154(1): 168-178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548091

RESUMEN

BACKGROUND: There are increasing numbers of metabolomic studies in food allergy (FA) and asthma, which, however, are predominantly limited by cross-sectional designs, small sample size, and being conducted in European populations. OBJECTIVE: We sought to identify metabolites unique to and shared by children with FA and/or asthma in a racially diverse prospective birth cohort, the Boston Birth Cohort. METHODS: Mass spectrometry-based untargeted metabolomic profiling was performed using venous plasma collected in early childhood (n = 811). FA was diagnosed according to clinical symptoms consistent with an acute hypersensitivity reaction at food ingestion and food specific-IgE > 0.35 kU/L. Asthma was defined on the basis of physician diagnosis. Generalized estimating equations were applied to analyze metabolomic associations with FA and asthma, adjusting for potential confounders. RESULTS: During a mean ± standard deviation follow-up of 11.8 ± 5.2 years from birth, 78 children developed FA and 171 developed asthma. Androgenic and pregnenolone steroids were significantly associated with a lower risk of FA, especially for egg allergy. N,N,N-trimethyl-5-aminovalerate (odds ratio [OR] = 0.65, 95% confidence interval [CI] = 0.48-0.87), and 1-oleoyl-2-arachidonoyl-sn-glycero-3-phosphoinositol (OR = 0.77; 95% CI = 0.66-0.90) were inversely associated with FA risk. Orotidine (OR = 4.73; 95% CI = 2.2-10.2) and 4-cholesten-3-one (OR = 0.52; 95% CI = 0.35-0.77) were the top 2 metabolites associated with risk of asthma, although they had no association with FA. In comparison, children with both FA and asthma exhibited an altered metabolomic profile that aligned with that of FA, including altered levels of lipids and steroids. CONCLUSION: In this US multiethnic prospective birth cohort, unique and shared alterations in plasma metabolites during early childhood were associated with risk of developing FA and/or asthma. These findings await further validation.


Asunto(s)
Asma , Hipersensibilidad a los Alimentos , Metabolómica , Humanos , Asma/sangre , Asma/epidemiología , Hipersensibilidad a los Alimentos/sangre , Hipersensibilidad a los Alimentos/epidemiología , Femenino , Masculino , Niño , Estudios Prospectivos , Preescolar , Cohorte de Nacimiento , Metaboloma , Boston/epidemiología , Lactante , Adolescente
19.
J Allergy Clin Immunol ; 153(5): 1194-1205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309598

RESUMEN

Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.


Asunto(s)
Cambio Climático , Humanos , Animales , Tolerancia Inmunológica , Inmunidad Innata , Exposición a Riesgos Ambientales/efectos adversos , Inmunidad Adaptativa
20.
Annu Rev Immunol ; 42(1): 401-425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38360544

RESUMEN

IgE-mediated food allergy (IgE-FA) occurs due to a breakdown in immune tolerance that leads to a detrimental type 2 helper T cell (TH2) adaptive immune response. While the processes governing this loss of tolerance are incompletely understood, several host-related and environmental factors impacting the risk of IgE-FA development have been identified. Mounting evidence supports the role of an impaired epithelial barrier in the development of IgE-FA, with exposure of allergens through damaged skin and gut epithelium leading to the aberrant production of alarmins and activation of TH2-type allergic inflammation. The treatment of IgE-FA has historically been avoidance with acute management of allergic reactions, but advances in allergen-specific immunotherapy and the development of biologics and other novel therapeutics are rapidly changing the landscape of food allergy treatment. Here, we discuss the pathogenesis and immunobiology of IgE-FA in addition to its diagnosis, prognosis, and treatment.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Inmunoglobulina E , Humanos , Hipersensibilidad a los Alimentos/terapia , Hipersensibilidad a los Alimentos/inmunología , Animales , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Alérgenos/inmunología , Desensibilización Inmunológica/métodos , Células Th2/inmunología , Tolerancia Inmunológica , Susceptibilidad a Enfermedades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...