Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inflammopharmacology ; 31(5): 2719-2729, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37458952

RESUMEN

Necroptosis, a programmed form of necrotic cell death carried out by receptor-interacting serine/threonine protein kinase 1 (RIPK1) and RIPK3, has been found to be implicated in the pathogenesis of Alzheimer's disease (AD). An FDA-approved anti-cancer drug, pazopanib, is reported to possess potent inhibitory effect against necroptosis via interfering with RIPK1. So far, there are no existing data on the influence of pazopanib on necroptotic pathway in AD. Thus, this study was designed to explore the impact of pazopanib on cognitive impairment provoked by ovariectomy (OVX) together with D-galactose (D-Gal) administration in rats and to scrutinize the putative signaling pathways underlying pazopanib-induced effects. Animals were allocated into four groups; the first and second groups were exposed to sham operation and administered normal saline and pazopanib (5 mg/kg/day, i.p.), respectively, for 6 weeks, while the third and fourth groups underwent OVX then were injected with D-Gal (150 mg/kg/day, i.p.); concomitantly with pazopanib in the fourth group for 6 weeks. Pazopanib ameliorated cognitive deficits as manifested by improved performance in the Morris water maze besides reversing the histological abnormalities. Pazopanib produced a significant decline in p-Tau and amyloid beta (Aß) plaques. The neuroprotective effect of pazopanib was revealed by hampering neuroinflammation, mitigating neuronal death and suppressing RIPK1/RIPK3/MLKL necroptosis signaling pathway. Accordingly, hindering neuroinflammation and the necroptotic RIPK1/RIPK3/MLKL pathway could contribute to the neuroprotective effect of pazopanib in D-Gal/OVX rat model. Therefore, this study reveals pazopanib as a valuable therapeutic agent in AD that warrants future inspection to provide further data regarding its neuroprotective effect.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Femenino , Ratas , Animales , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Galactosa/farmacología , Necroptosis , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Transducción de Señal , Cognición , Apoptosis
2.
Toxics ; 11(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36668774

RESUMEN

Gentamicin (GNT) is the most frequently used aminoglycoside. However, its therapeutic efficacy is limited due to nephrotoxicity. Thus, the potential anticipatory effect of Diosmin (DIOS) against GNT-prompted kidney damage in rats together with the putative nephroprotective pathways were scrutinized. Four groups of rats were used: (1) control; (2) GNT only; (3) GNT plus DIOS; and (4) DIOS only. Nephrotoxicity was elucidated, and the microRNA-21 (miR-21) and microRNA-155 (miR-155) expression and Nrf2/HO-1 and p38-MAPK/NF-κB pathways were assessed. GNT provoked an upsurge in the relative kidney weight and serum level of urea, creatinine, and KIM-1. The MDA level was markedly boosted, with a decline in the level of TAC, SOD, HO-1, and Nrf2 expression in the renal tissue. Additionally, GNT exhibited a notable amplification in TNF-α, IL-1ß, NF-κB p65, and p38-MAPK kidney levels. Moreover, caspase-3 and BAX expression were elevated, whereas the Bcl-2 level was reduced. Furthermore, GNT resulted in the down-regulation of miR-21 expression along with an up-regulation of the miR-155 expression. Histological examination revealed inflammation, degradation, and necrosis. GNT-provoked pathological abnormalities were reversed by DIOS treatment, which restored normal kidney architecture. Hence, regulating miR-21 and -155 expression and modulating Nrf2/HO-1 and p38-MAPK/NF-κB pathways could take a vital part in mediating the reno-protective effect of DIOS.

3.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296710

RESUMEN

The aim of the present study is to investigate the phytochemical composition of tiger nut (TN) (Cyperus esculentus L.) and its neuroprotective potential in scopolamine (Scop)-induced cognitive impairment in rats. The UHPLC-ESI-QTOF-MS analysis enabled the putative annotation of 88 metabolites, such as saccharides, amino acids, organic acids, fatty acids, phenolic compounds and flavonoids. Treatment with TN extract restored Scop-induced learning and memory impairments. In parallel, TN extract succeeded in lowering amyloid beta, ß-secretase protein expression and acetylcholine esterase (AChE) activity in the hippocampus of rats. TN extract decreased malondialdehyde levels, restored antioxidant levels and reduced proinflammatory cytokines as well as the Bax/Bcl2 ratio. Histopathological analysis demonstrated marked neuroprotection in TN-treated groups. In conclusion, the present study reveals that TN extract attenuates Scop-induced memory impairments by diminishing amyloid beta aggregates, as well as its anti-inflammatory, antioxidant, anti-apoptotic and anti-AChE activities.


Asunto(s)
Disfunción Cognitiva , Cyperus , Fármacos Neuroprotectores , Animales , Ratas , Escopolamina/efectos adversos , Cyperus/química , Fármacos Neuroprotectores/uso terapéutico , Antioxidantes/metabolismo , Acetilcolina/metabolismo , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Malondialdehído/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Extractos Vegetales/metabolismo , Flavonoides/metabolismo , Aminoácidos/metabolismo , Ácidos Grasos/metabolismo , Citocinas/metabolismo , Esterasas/metabolismo
4.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35745619

RESUMEN

Protein kinases are seen as promising targets in controlling cell proliferation and survival in treating cancer where fused thiophene synthon was utilized in many kinase inhibitors approved by the FDA. Accordingly, this work focused on adopting fused thienopyrrole and pyrrolothienopyrimidine scaffolds in preparing new inhibitors, which were evaluated as antiproliferative agents in the HepG2 and PC-3 cell lines. The compounds 3b (IC50 = 3.105 and 2.15 µM) and 4c (IC50 = 3.023 and 3.12 µM) were the most promising candidates on both cells with good selective toxicity-sparing normal cells. A further mechanistic evaluation revealed promising kinase inhibitory activity, where 4c inhibited VEGFR-2 and AKT at IC50 = 0.075 and 4.60 µM, respectively, while 3b showed IC50 = 0.126 and 6.96 µM, respectively. Moreover, they resulted in S phase cell cycle arrest with subsequent caspase-3-induced apoptosis. Lastly, docking studies evaluated the binding patterns of these active derivatives and demonstrated a similar fitting pattern to the reference ligands inside the active sites of both VEGFR-2 and AKT (allosteric pocket) crystal structures. To conclude, these thiophene derivatives represent promising antiproliferative leads inhibiting both VEGFR-2 and AKT and inducing apoptosis in liver cell carcinoma.

5.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35455425

RESUMEN

Breast cancer is the most common malignancy worldwide; therefore, the development of new anticancer agents is essential for improved tumor control. By adopting the pharmacophore hybridization approach, two series of 7-hydroxyl-4-methylcoumarin hybridized with thiosemicarbazone (V-VI) and thiazolidin-4-one moieties (VII-VIII) were prepared. The in vitro anticancer activity was assessed against MCF-7 cells adopting the MTT assay. Nine compounds showed significant cytotoxicity. The most promising compound, VIIb, induced remarkable cytotoxicity (IC50 of 1.03 + 0.05 µM). Further investigations were conducted to explore its pro-apoptotic activity demonstrating S-phase cell cycle arrest. Apoptosis rates following VIIb treatment revealed a 5-fold and 100-fold increase in early and late apoptotic cells, correspondingly. Moreover, our results showed caspase-9 dependent apoptosis induction as manifested by an 8-fold increase in caspase-9 level following VIIb treatment. Mechanistically, VIIb was found to target the PI3K-α/Akt-1 axis, as evidenced by enzyme inhibition assay results reporting significant inhibition of examined enzymes. These findings were confirmed by Western blot results indicating the ability of VIIb to repress levels of Cyclin D1, p-PI3K, and p-Akt. Furthermore, docking studies showed that VIIb has a binding affinity with the PI3K binding site higher than the original ligands X6K. Our results suggest that VIIb has pharmacological potential as a promising anti-cancer compound by the inhibition of the PI3K/Akt axis.

6.
Naunyn Schmiedebergs Arch Pharmacol ; 391(7): 729-742, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29671021

RESUMEN

Manganese (Mn) is required for many essential biological processes as well as in the development and functioning of the brain. Extensive accumulation of Mn in the brain may cause central nervous system dysfunction known as manganism, a motor disorder associated with cognitive and neuropsychiatric deficits similar to parkinsonism. Vinpocetine, a synthetic derivative of the alkaloid vincamine, is used to improve the cognitive function in cerebrovascular diseases. It possesses antioxidant and antiinflammatory properties. The present work was designed to explore the potential neuroprotective mechanisms exerted by vinpocetine in the Mn-induced neurotoxicity in rats. Rats were allocated into four groups. First group was given saline. The other three groups were given MnCl2; two of them were treated with either L-dopa, the gold standard antiparkinsonian drug, or vinpocetine. Rats receiving MnCl2 exhibited lengthened catalepsy duration in the grid and bar tests, motor impairment in the open-field test and short-term memory deficit in the Y-maze test. Additionally, histological examination revealed structural alterations and degeneration in different brain regions. Besides, striatal monoamines and mitochondrial complex I contents were declined, apoptotic biomarker caspase-3 expression and acetylcholinesterase activity were elevated. Moreover, oxidative stress and inflammation were detected in the striata. L-dopa or vinpocetine exerted protective effects against MnCl2-induced neurotoxicity. It could be hypothesized that modulation of monoamines, upregulation of mitochondrial complex I, antioxidant, antiinflammatory, and antiapoptotic activities are significant mechanisms underlying the neuroprotective effect of vinpocetine in the Mn-induced neurotoxicity model in rats.


Asunto(s)
Manganeso/toxicidad , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/tratamiento farmacológico , Alcaloides de la Vinca/uso terapéutico , Animales , Monoaminas Biogénicas/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Caspasa 3/metabolismo , Catalepsia/tratamiento farmacológico , Catalepsia/metabolismo , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Alcaloides de la Vinca/farmacología
7.
Neurochem Res ; 40(9): 1810-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26216050

RESUMEN

Recent studies have demonstrated a scrutinized association of diabetes mellitus with depressive symptoms and major depression. Glycogen synthase kinase-3 (GSK-3) is a protein kinase enzyme constitutively active in non-stimulated cells and in multiple signalings. Independent lines of research provide a converging evidence for an involvement of GSK-3 in the regulation of behavior and hyperglycemia. The present study revealed that streptozotocin (STZ)-induced diabetic rats were found to show lengthened duration of immobility in the forced-swimming test (FST) and reduced locomotor and exploratory activities in the open-field test (OFT). Imipramine (15 mg/kg), Paroxetine (10 mg/kg) and lithium carbonate (36.94 mg/kg) for 14 days reduced immobility behavior in FST. Paroxetine and lithium carbonate increased the locomotor and exploratory activities, while imipramine decreased the locomotor activity in the OFT. Imipramine and lithium carbonate reduced the blood glucose level while paroxetine didn't alter it. STZ-induced diabetes increased GSK-3 gene expression which was determined using the reverse transcription-quantitative polymerase chain reaction test, while the three drugs decreased its expression. It can be concluded that lithium carbonate and imipramine can control both hyperglycemia and the associated symptoms of depression at the same time by inhibiting GSK-3 activity. On the other hand, paroxetine may only manage the depressive-like symptoms associated with diabetes through modulating the enzyme GSK-3, without changing blood glucose levels.


Asunto(s)
Glucemia/análisis , Glucógeno Sintasa Quinasa 3/metabolismo , Imipramina/farmacología , Carbonato de Litio/farmacología , Paroxetina/farmacología , Estreptozocina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/fisiopatología , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratas , Ratas Sprague-Dawley , Natación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...