Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pediatr Res ; 89(5): 1126-1135, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32303051

RESUMEN

BACKGROUND: Endogenous pulmonary stem cells (PSCs) play an important role in lung development and repair; however, little is known about their role in bronchopulmonary dysplasia (BPD). We hypothesize that an endogenous PSC marker stage-specific embryonic antigen-1 (SSEA-1) and its enzyme, α1,3-fucosyltransferase IX (FUT9) play an important role in decreasing inflammation and restoring lung structure in experimental BPD. METHODS: We studied the expression of SSEA-1, and its enzyme FUT9, in wild-type (WT) C57BL/6 mice, in room air and hyperoxia. Effects of intraperitoneal administration of recombinant human FUT9 (rhFUT9) on lung airway and parenchymal inflammation, alveolarization, and apoptosis were evaluated. RESULTS: On hyperoxia exposure, SSEA-1 significantly decreased at postnatal day 14 in hyperoxia-exposed BPD mice, accompanied by a decrease in FUT9. BPD and respiratory distress syndrome (RDS) in human lungs showed decreased expression of SSEA-1 as compared to their term controls. Importantly, intraperitoneal administration of FUT9 in the neonatal BPD mouse model resulted in significant decrease in pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leakage, alveolar simplification, and cell death in the hyperoxia-exposed BPD mice. CONCLUSIONS: An important role of endogenous PSC marker SSEA-1 and its enzyme FUT9 is demonstrated, indicating early systemic intervention with FUT9 as a potential therapeutic option for BPD. IMPACT: Administration of rhFUT9, an enzyme of endogenous stem cell marker SSEA-1, reduces pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leak and cell death in the BPD mouse model. SSEA-1 is reported for the first time in experimental BPD models, and in human RDS and BPD. rhFUT9 treatment ameliorates hyperoxia-induced lung injury in a developmentally appropriate BPD mouse model. Our results have translational potential as a therapeutic modality for BPD in the developing lung.


Asunto(s)
Displasia Broncopulmonar/tratamiento farmacológico , Fucosiltransferasas/uso terapéutico , Antígeno Lewis X/metabolismo , Pulmón/citología , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Ratones , Ratones Endogámicos C57BL
2.
Mol Microbiol ; 94(4): 815-27, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25231235

RESUMEN

Spx, a member of the ArsC (arsenate reductase) protein family, is conserved in Gram-positive bacteria, and interacts with RNA polymerase to activate transcription in response to toxic oxidants. In Bacillus anthracis str. Sterne, resistance to oxidative stress requires the activity of two paralogues, SpxA1 and SpxA2. Suppressor mutations were identified in spxA1 mutant cells that conferred resistance to hydrogen peroxide. The mutations generated null alleles of the saiR gene and resulted in elevated spxA2 transcription. The saiR gene resides in the spxA2 operon and encodes a member of the Rrf2 family of transcriptional repressors. Derepression of spxA2 in a saiR mutant required SpxA2, indicating an autoregulatory mechanism of spxA2 control. Reconstruction of SaiR-dependent control of spxA2 was accomplished in Bacillus subtilis, where deletion analysis uncovered two cis-elements within the spxA2 regulatory region that are required for repression. Mutations to one of the sequences of dyad symmetry substantially reduced SaiR binding and SaiR-dependent repression of transcription from the spxA2 promoter in vitro. Previous studies have shown that spxA2 is one of the most highly induced genes in a macrophage infected with B. anthracis. The work reported herein uncovered a key regulator, SaiR, of the Spx system of stress response control.


Asunto(s)
Bacillus anthracis/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Análisis Mutacional de ADN , Eliminación de Gen , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA