Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992089

RESUMEN

Mitochondria contain dedicated ribosomes (mitoribosomes), which synthesize the mitochondrial-encoded core components of the oxidative phosphorylation complexes. The RNA and protein components of mitoribosomes are encoded on two different genomes (mitochondrial and nuclear) and are assembled into functional complexes with the help of dedicated factors inside the organelle. Defects in mitoribosome biogenesis are associated with severe human diseases, yet the molecular pathway of mitoribosome assembly remains poorly understood. Here, we applied a multidisciplinary approach combining biochemical isolation and analysis of native mitoribosomal assembly complexes with quantitative mass spectrometry and mathematical modeling to reconstitute the entire assembly pathway of the human mitoribosome. We show that, in contrast to its bacterial and cytosolic counterparts, human mitoribosome biogenesis involves the formation of ribosomal protein-only modules, which then assemble on the appropriate ribosomal RNA moiety in a coordinated fashion. The presence of excess protein-only modules primed for assembly rationalizes how mitochondria cope with the challenge of forming a protein-rich ribonucleoprotein complex of dual genetic origin. This study provides a comprehensive roadmap of mitoribosome biogenesis, from very early to late maturation steps, and highlights the evolutionary divergence from its bacterial ancestor.

2.
Biol Chem ; 404(8-9): 769-779, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37377370

RESUMEN

Mitochondria are the essential players in eukaryotic ATP production by oxidative phosphorylation, which relies on the maintenance and accurate expression of the mitochondrial genome. Even though the basic principles of translation are conserved due to the descendance from a bacterial ancestor, some deviations regarding translation factors as well as mRNA characteristics and the applied genetic code are present in human mitochondria. Together, these features are certain challenges during translation the mitochondrion has to handle. Here, we discuss the current knowledge regarding mitochondrial translation focusing on the termination process and the associated quality control mechanisms. We describe how mtRF1a resembles bacterial RF1 mechanistically and summarize in vitro and recent in vivo data leading to the conclusion of mtRF1a being the major mitochondrial release factor. On the other hand, we discuss the ongoing debate about the function of the second codon-dependent mitochondrial release factor mtRF1 regarding its role as a specialized termination factor. Finally, we link defects in mitochondrial translation termination to the activation of mitochondrial rescue mechanisms highlighting the importance of ribosome-associated quality control for sufficient respiratory function and therefore for human health.


Asunto(s)
Factores de Terminación de Péptidos , Biosíntesis de Proteínas , Humanos , Codón de Terminación/metabolismo , Especificidad por Sustrato , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Mitocondrias/metabolismo
3.
Nat Commun ; 13(1): 6406, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302763

RESUMEN

Translation termination requires release factors that read a STOP codon in the decoding center and subsequently facilitate the hydrolysis of the nascent peptide chain from the peptidyl tRNA within the ribosome. In human mitochondria eleven open reading frames terminate in the standard UAA or UAG STOP codon, which can be recognized by mtRF1a, the proposed major mitochondrial release factor. However, two transcripts encoding for COX1 and ND6 terminate in the non-conventional AGA or AGG codon, respectively. How translation termination is achieved in these two cases is not known. We address this long-standing open question by showing that the non-canonical release factor mtRF1 is a specialized release factor that triggers COX1 translation termination, while mtRF1a terminates the majority of other mitochondrial translation events including the non-canonical ND6. Loss of mtRF1 leads to isolated COX deficiency and activates the mitochondrial ribosome-associated quality control accompanied by the degradation of COX1 mRNA to prevent an overload of the ribosome rescue system. Taken together, these results establish the role of mtRF1 in mitochondrial translation, which had been a mystery for decades, and lead to a comprehensive picture of translation termination in human mitochondria.


Asunto(s)
Ciclooxigenasa 1 , Proteínas Mitocondriales , Ribosomas Mitocondriales , Factores de Terminación de Péptidos , Humanos , Codón de Terminación/genética , Codón de Terminación/metabolismo , Ribosomas Mitocondriales/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Control de Calidad , Ribosomas/genética , Ribosomas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ciclooxigenasa 1/genética
4.
J Biol Chem ; 298(10): 102465, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36075292

RESUMEN

Mitochondria harbor the bacteria-inherited iron-sulfur cluster assembly (ISC) machinery to generate [2Fe-2S; iron-sulfur (Fe-S)] and [4Fe-4S] proteins. In yeast, assembly of [4Fe-4S] proteins specifically involves the ISC proteins Isa1, Isa2, Iba57, Bol3, and Nfu1. Functional defects in their human equivalents cause the multiple mitochondrial dysfunction syndromes, severe disorders with a broad clinical spectrum. The bacterial Iba57 ancestor YgfZ was described to require tetrahydrofolate (THF) for its function in the maturation of selected [4Fe-4S] proteins. Both YgfZ and Iba57 are structurally related to an enzyme family catalyzing THF-dependent one-carbon transfer reactions including GcvT of the glycine cleavage system. On this basis, a universally conserved folate requirement in ISC-dependent [4Fe-4S] protein biogenesis was proposed. To test this idea for mitochondrial Iba57, we performed genetic and biochemical studies in Saccharomyces cerevisiae, and we solved the crystal structure of Iba57 from the thermophilic fungus Chaetomium thermophilum. We provide three lines of evidence for the THF independence of the Iba57-catalyzed [4Fe-4S] protein assembly pathway. First, yeast mutants lacking folate show no defect in mitochondrial [4Fe-4S] protein maturation. Second, the 3D structure of Iba57 lacks many of the side-chain contacts to THF as defined in GcvT, and the THF-binding pocket is constricted. Third, mutations in conserved Iba57 residues that are essential for THF-dependent catalysis in GcvT do not impair Iba57 function in vivo, in contrast to an exchange of the invariant, surface-exposed cysteine residue. We conclude that mitochondrial Iba57, despite structural similarities to both YgfZ and THF-binding proteins, does not utilize folate for its function.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Portadoras/metabolismo , Ácido Fólico/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetrahidrofolatos/metabolismo
5.
RNA Biol ; 19(1): 117-131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34923906

RESUMEN

The universally conserved process of protein biosynthesis is crucial for maintaining cellular homoeostasis and in eukaryotes, mitochondrial translation is essential for aerobic energy production. Mitochondrial ribosomes (mitoribosomes) are highly specialized to synthesize 13 core subunits of the oxidative phosphorylation (OXPHOS) complexes. Although the mitochondrial translation machinery traces its origin from a bacterial ancestor, it has acquired substantial differences within this endosymbiotic environment. The cycle of mitoribosome function proceeds through the conserved canonical steps of initiation, elongation, termination and mitoribosome recycling. However, when mitoribosomes operate in the context of limited translation factors or on aberrant mRNAs, they can become stalled and activation of rescue mechanisms is required. This review summarizes recent advances in the understanding of protein biosynthesis in mitochondria, focusing especially on the mechanistic and physiological details of translation termination, and mitoribosome recycling and rescue.


Asunto(s)
Mitocondrias/fisiología , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Animales , Bacterias/genética , Bacterias/metabolismo , Eucariontes/fisiología , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
6.
Nat Commun ; 12(1): 3672, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135319

RESUMEN

Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.


Asunto(s)
Proteínas de Unión al GTP/química , Ribosomas Mitocondriales/química , Proteínas de Unión al GTP Monoméricas/química , Microscopía por Crioelectrón , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Biogénesis de Organelos , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Pliegue de Proteína , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
7.
Nucleic Acids Res ; 48(22): 12929-12942, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33264405

RESUMEN

Translation and ribosome biogenesis in mitochondria require auxiliary factors that ensure rapid and accurate synthesis of mitochondrial proteins. Defects in translation are associated with oxidative phosphorylation deficiency and cause severe human diseases, but the exact roles of mitochondrial translation-associated factors are not known. Here we identify the functions of GTPBP6, a homolog of the bacterial ribosome-recycling factor HflX, in human mitochondria. Similarly to HflX, GTPBP6 facilitates the dissociation of ribosomes in vitro and in vivo. In contrast to HflX, GTPBP6 is also required for the assembly of mitochondrial ribosomes. GTPBP6 ablation leads to accumulation of late assembly intermediate(s) of the large ribosomal subunit containing ribosome biogenesis factors MTERF4, NSUN4, MALSU1 and the GTPases GTPBP5, GTPBP7 and GTPBP10. Our data show that GTPBP6 has a dual function acting in ribosome recycling and biogenesis. These findings contribute to our understanding of large ribosomal subunit assembly as well as ribosome recycling pathway in mitochondria.


Asunto(s)
Proteínas de Unión al GTP/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales , GTP Fosfohidrolasas/genética , Humanos , Metiltransferasas/genética , Proteínas de Unión al GTP Monoméricas/genética , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...