Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-34250394

RESUMEN

PURPOSE: This study was designed to assess the ability of perioperative circulating tumor DNA (ctDNA) to predict surgical outcome and recurrence following neoadjuvant chemoradiation for locally advanced rectal cancer (LARC). MATERIALS AND METHODS: Twenty-nine patients with newly diagnosed LARC treated between January 2014 and February 2018 were enrolled. Patients received long-course neoadjuvant chemoradiation prior to surgery. Plasma ctDNA was collected at baseline, preoperatively, and postoperatively. Next-generation sequencing was used to identify mutations in the primary tumor, and mutation-specific droplet digital polymerase chain reaction was used to assess mutation fraction in ctDNA. RESULTS: The median age was 54 years. The overall margin-negative, node-negative resection rate was 73% and was significantly higher among patients with undetectable preoperative ctDNA (n = 17, 88%) versus patients with detectable preoperative ctDNA (n = 9, 44%; P = .028). Undetectable ctDNA was also associated with more favorable neoadjuvant rectal scores (univariate linear regression, P = .029). Recurrence-free survival (RFS) was calculated for the subset (n = 19) who both underwent surgery and had postoperative ctDNA available. At a median follow-up of 20 months, patients with detectable postoperative ctDNA experienced poorer RFS (hazard ratio, 11.56; P = .007). All patients (4 of 4) with detectable postoperative ctDNA recurred (positive predictive value = 100%), whereas only 2 of 15 patients with undetectable ctDNA recurred (negative predictive value = 87%). CONCLUSION: Among patients treated with neoadjuvant chemoradiation for LARC, patients with undetectable preoperative ctDNA were more likely to have a favorable surgical outcome as measured by the rate of margin-negative, node-negative resections and neoadjuvant rectal score. Furthermore, we have confirmed prior reports indicating that detectable postoperative ctDNA is associated with worse RFS. Future prospective study is needed to assess the potential for ctDNA to assist with personalizing treatment for LARC.


Asunto(s)
ADN Tumoral Circulante/sangre , Terapia Neoadyuvante , Neoplasias del Recto/sangre , Neoplasias del Recto/terapia , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Neoplasias del Recto/patología , Neoplasias del Recto/cirugía , Estudios Retrospectivos , Resultado del Tratamiento
3.
Clin Cancer Res ; 26(8): 1877-1885, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941831

RESUMEN

PURPOSE: ctDNA offers a promising, noninvasive approach to monitor therapeutic efficacy in real-time. We explored whether the quantitative percent change in ctDNA early after therapy initiation can predict treatment response and progression-free survival (PFS) in patients with metastatic gastrointestinal cancer. EXPERIMENTAL DESIGN: A total of 138 patients with metastatic gastrointestinal cancers and tumor profiling by next-generation sequencing had serial blood draws pretreatment and at scheduled intervals during therapy. ctDNA was assessed using individualized droplet digital PCR measuring the mutant allele fraction in plasma of mutations identified in tumor biopsies. ctDNA changes were correlated with tumor markers and radiographic response. RESULTS: A total of 138 patients enrolled. A total of 101 patients were evaluable for ctDNA and 68 for tumor markers at 4 weeks. Percent change of ctDNA by 4 weeks predicted partial response (PR, P < 0.0001) and clinical benefit [CB: PR and stable disease (SD), P < 0.0001]. ctDNA decreased by 98% (median) and >30% for all PR patients. ctDNA change at 8 weeks, but not 2 weeks, also predicted CB (P < 0.0001). Four-week change in tumor markers also predicted response (P = 0.0026) and CB (P = 0.022). However, at a clinically relevant specificity threshold of 90%, 4-week ctDNA change more effectively predicted CB versus tumor markers, with a sensitivity of 60% versus 24%, respectively (P = 0.0109). Patients whose 4-week ctDNA decreased beyond this threshold (≥30% decrease) had a median PFS of 175 days versus 59.5 days (HR, 3.29; 95% CI, 1.55-7.00; P < 0.0001). CONCLUSIONS: Serial ctDNA monitoring may provide early indication of response to systemic therapy in patients with metastatic gastrointestinal cancer prior to radiographic assessments and may outperform standard tumor markers, warranting further evaluation.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/sangre , Neoplasias Gastrointestinales/patología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Neoplasias Gastrointestinales/sangre , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estudios Prospectivos , Tasa de Supervivencia , Resultado del Tratamiento , Adulto Joven
4.
Clin Cancer Res ; 26(2): 439-449, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31548343

RESUMEN

PURPOSE: Although patients with advanced-stage non-small cell lung cancers (NSCLC) harboring MET exon 14 skipping mutations (METex14) often benefit from MET tyrosine kinase inhibitor (TKI) treatment, clinical benefit is limited by primary and acquired drug resistance. The molecular basis for this resistance remains incompletely understood. EXPERIMENTAL DESIGN: Targeted sequencing analysis was performed on cell-free circulating tumor DNA obtained from 289 patients with advanced-stage METex14-mutated NSCLC. RESULTS: Prominent co-occurring RAS-MAPK pathway gene alterations (e.g., in KRAS, NF1) were detected in NSCLCs with METex14 skipping alterations as compared with EGFR-mutated NSCLCs. There was an association between decreased MET TKI treatment response and RAS-MAPK pathway co-occurring alterations. In a preclinical model expressing a canonical METex14 mutation, KRAS overexpression or NF1 downregulation hyperactivated MAPK signaling to promote MET TKI resistance. This resistance was overcome by cotreatment with crizotinib and the MEK inhibitor trametinib. CONCLUSIONS: Our study provides a genomic landscape of co-occurring alterations in advanced-stage METex14-mutated NSCLC and suggests a potential combination therapy strategy targeting MAPK pathway signaling to enhance clinical outcomes.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Crizotinib/uso terapéutico , Exones , Sistema de Señalización de MAP Quinasas/genética , Proteína Oncogénica p21(ras)/genética , Proteínas Proto-Oncogénicas c-met/genética , Anciano , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento , Células Tumorales Cultivadas
6.
Nat Med ; 25(9): 1415-1421, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31501609

RESUMEN

During cancer therapy, tumor heterogeneity can drive the evolution of multiple tumor subclones harboring unique resistance mechanisms in an individual patient1-3. Previous case reports and small case series have suggested that liquid biopsy (specifically, cell-free DNA (cfDNA)) may better capture the heterogeneity of acquired resistance4-8. However, the effectiveness of cfDNA versus standard single-lesion tumor biopsies has not been directly compared in larger-scale prospective cohorts of patients following progression on targeted therapy. Here, in a prospective cohort of 42 patients with molecularly defined gastrointestinal cancers and acquired resistance to targeted therapy, direct comparison of postprogression cfDNA versus tumor biopsy revealed that cfDNA more frequently identified clinically relevant resistance alterations and multiple resistance mechanisms, detecting resistance alterations not found in the matched tumor biopsy in 78% of cases. Whole-exome sequencing of serial cfDNA, tumor biopsies and rapid autopsy specimens elucidated substantial geographic and evolutionary differences across lesions. Our data suggest that acquired resistance is frequently characterized by profound tumor heterogeneity, and that the emergence of multiple resistance alterations in an individual patient may represent the 'rule' rather than the 'exception'. These findings have profound therapeutic implications and highlight the potential advantages of cfDNA over tissue biopsy in the setting of acquired resistance.


Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , ADN de Neoplasias/sangre , Neoplasias Gastrointestinales/sangre , Biopsia Líquida , Autopsia , Ácidos Nucleicos Libres de Células/genética , Estudios de Cohortes , ADN de Neoplasias/genética , Resistencia a Antineoplásicos/genética , Femenino , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Heterogeneidad Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Secuenciación del Exoma
7.
Cancer Discov ; 9(8): 1064-1079, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31109923

RESUMEN

ATP-competitive fibroblast growth factor receptor (FGFR) kinase inhibitors, including BGJ398 and Debio 1347, show antitumor activity in patients with intrahepatic cholangiocarcinoma (ICC) harboring activating FGFR2 gene fusions. Unfortunately, acquired resistance develops and is often associated with the emergence of secondary FGFR2 kinase domain mutations. Here, we report that the irreversible pan-FGFR inhibitor TAS-120 demonstrated efficacy in 4 patients with FGFR2 fusion-positive ICC who developed resistance to BGJ398 or Debio 1347. Examination of serial biopsies, circulating tumor DNA (ctDNA), and patient-derived ICC cells revealed that TAS-120 was active against multiple FGFR2 mutations conferring resistance to BGJ398 or Debio 1347. Functional assessment and modeling the clonal outgrowth of individual resistance mutations from polyclonal cell pools mirrored the resistance profiles observed clinically for each inhibitor. Our findings suggest that strategic sequencing of FGFR inhibitors, guided by serial biopsy and ctDNA analysis, may prolong the duration of benefit from FGFR inhibition in patients with FGFR2 fusion-positive ICC. SIGNIFICANCE: ATP-competitive FGFR inhibitors (BGJ398, Debio 1347) show efficacy in FGFR2-altered ICC; however, acquired FGFR2 kinase domain mutations cause drug resistance and tumor progression. We demonstrate that the irreversible FGFR inhibitor TAS-120 provides clinical benefit in patients with resistance to BGJ398 or Debio 1347 and overcomes several FGFR2 mutations in ICC models.This article is highlighted in the In This Issue feature, p. 983.


Asunto(s)
Adenosina Trifosfato/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Adulto , Anciano , Línea Celular Tumoral , Colangiocarcinoma/diagnóstico , ADN Tumoral Circulante , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/química , Pirimidinas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Tomografía Computarizada por Rayos X
8.
JCO Precis Oncol ; 20182018.
Artículo en Inglés | MEDLINE | ID: mdl-30123863

RESUMEN

PURPOSE: Third-generation epidermal growth factor receptor (EGFR) inhibitors like nazartinib are active against EGFR mutation-positive lung cancers with T790M-mediated acquired resistance to initial anti-EGFR treatment, but some patients have mixed responses. METHODS: Multiple serial tumor and liquid biopsies were obtained from two patients before, during, and after treatment with nazartinib. Next-generation sequencing and droplet digital polymerase chain reaction were performed to assess heterogeneity and clonal dynamics. RESULTS: We observed the simultaneous emergence of T790M-dependent and -independent clones in both patients. Serial plasma droplet digital polymerase chain reaction illustrated shifts in relative clonal abundance in response to various systemic therapies, confirming a molecular basis for the clinical mixed radiographic responses observed. CONCLUSION: Heterogeneous responses to treatment targeting a solitary resistance mechanism can be explained by coexistent tumor subclones harboring distinct genetic signatures. Serial liquid biopsies offer an opportunity to monitor clonal dynamics and the emergence of resistance and may represent a useful tool to guide therapeutic strategies.

9.
Cancer Discov ; 8(9): 1096-1111, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29903880

RESUMEN

Clinically relevant subtypes exist for pancreatic ductal adenocarcinoma (PDAC), but molecular characterization is not yet standard in clinical care. We implemented a biopsy protocol to perform time-sensitive whole-exome sequencing and RNA sequencing for patients with advanced PDAC. Therapeutically relevant genomic alterations were identified in 48% (34/71) and pathogenic/likely pathogenic germline alterations in 18% (13/71) of patients. Overall, 30% (21/71) of enrolled patients experienced a change in clinical management as a result of genomic data. Twenty-six patients had germline and/or somatic alterations in DNA-damage repair genes, and 5 additional patients had mutational signatures of homologous recombination deficiency but no identified causal genomic alteration. Two patients had oncogenic in-frame BRAF deletions, and we report the first clinical evidence that this alteration confers sensitivity to MAPK pathway inhibition. Moreover, we identified tumor/stroma gene expression signatures with clinical relevance. Collectively, these data demonstrate the feasibility and value of real-time genomic characterization of advanced PDAC.Significance: Molecular analyses of metastatic PDAC tumors are challenging due to the heterogeneous cellular composition of biopsy specimens and rapid progression of the disease. Using an integrated multidisciplinary biopsy program, we demonstrate that real-time genomic characterization of advanced PDAC can identify clinically relevant alterations that inform management of this difficult disease. Cancer Discov; 8(9); 1096-111. ©2018 AACR.See related commentary by Collisson, p. 1062This article is highlighted in the In This Issue feature, p. 1047.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Perfilación de la Expresión Génica/métodos , Variación Genética , Genómica/métodos , Neoplasias Pancreáticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Ductal Pancreático/tratamiento farmacológico , Reparación del ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Mutación de Línea Germinal , Recombinación Homóloga , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/tratamiento farmacológico , Medicina de Precisión , Análisis de Secuencia de ARN/métodos , Secuenciación del Exoma/métodos
10.
Oncoimmunology ; 7(5): e1423172, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721378

RESUMEN

Background: Approximately 50% of melanomas harbor BRAF mutations. Treatment with BRAF +/- MEK inhibition is associated with favorable changes in the tumor microenvironment thus providing the rationale for combining targeted agents with immunotherapy. Methods: Patients with unresectable Stage III or IV BRAFV600E mutant melanoma were enrolled in a single-center prospective study (n = 6). Patients were eligible to receive two courses of HD-IL-2 and vemurafenib twice daily. The primary endpoint was progression-free survival (PFS) with secondary objectives including overall survival (OS), response rates (RR), and safety of combination therapy as compared to historical controls. Immune profiling was performed in longitudinal tissue samples, when available. Results: Overall RR was 83.3% (95% CI: 36%-99%) and 66.6% at 12 weeks. All patients eventually progressed, with three progressing on treatment and three progressing after the vemurafenib continuation phase ended. Median PFS was 35.8 weeks (95% CI: 16-57 weeks). Median OS was not reached; however, the time at which 75% of patients were still alive was 104.4 weeks. Change in circulating BRAFV600E levels correlated with response. Though combination therapy was associated with enhanced CD8 T cell infiltrate, an increase in regulatory T cell frequency was seen with HD-IL-2 administration, suggesting a potential limitation in this strategy. Conclusion: Combination vemurafenib and HD-IL-2 is well tolerated and associated with treatment responses. However, the HD-IL-2 induced increase in Tregs may abrogate potential synergy. Given the efficacy of regimens targeting the PD-1 pathway, strategies combining these regimens with BRAF-targeted therapy are currently underway, and the role of combination vemurafenib and HD-IL-2 is uncertain. Trial Registration: Clinical trial information: NCT01754376; https://clinicaltrials.gov/show/NCT01754376.

11.
Cancer Discov ; 8(4): 417-427, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29431697

RESUMEN

Clonal heterogeneity associated with acquired resistance presents a critical therapeutic challenge. Whole-exome sequencing of paired tumor biopsies and targeted sequencing of cell-free DNA (cfDNA) from patients with BRAFV600E colorectal cancer receiving BRAF inhibitor combinations identified 14 distinct alterations in MAPK pathway components driving acquired resistance, with as many as eight alterations in a single patient. We developed a pooled clone system to study clonal outgrowth during acquired resistance, in vitro and in vivoIn vitro, the dynamics of individual resistant clones could be monitored in real time in cfDNA isolated from culture media during therapy. Outgrowth of multiple resistant clones was observed during therapy with BRAF, EGFR, and MEK inhibitor combinations. However, ERK inhibition, particularly in combination with BRAF and EGFR inhibition, markedly abrogated clonal outgrowth in vitro and in vivo Thus, convergent, up-front therapy may suppress outgrowth of heterogeneous clones harboring clinically observed resistance alterations, which may improve clinical outcome.Significance: We observed heterogeneous, recurrent alterations in the MAPK pathway as key drivers of acquired resistance in BRAFV600E colorectal cancer, with multiple concurrent resistance alterations detectable in individual patients. Using a novel pooled clone system, we identify convergent up-front therapeutic strategies capable of intercepting multiple resistance mechanisms as potential approaches to suppress emergence of acquired resistance. Cancer Discov; 8(4); 417-27. ©2018 AACR.See related commentary by Janku, p. 389See related article by Corcoran et al., p. 428This article is highlighted in the In This Issue feature, p. 371.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Sistema de Señalización de MAP Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Mutación Missense , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Secuenciación del Exoma , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Commun ; 8(1): 1136, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29070816

RESUMEN

Treatment with immune checkpoint blockade (CPB) therapies often leads to prolonged responses in patients with metastatic melanoma, but the common mechanisms of primary and acquired resistance to these agents remain incompletely characterized and have yet to be validated in large cohorts. By analyzing longitudinal tumor biopsies from 17 metastatic melanoma patients treated with CPB therapies, we observed point mutations, deletions or loss of heterozygosity (LOH) in beta-2-microglobulin (B2M), an essential component of MHC class I antigen presentation, in 29.4% of patients with progressing disease. In two independent cohorts of melanoma patients treated with anti-CTLA4 and anti-PD1, respectively, we find that B2M LOH is enriched threefold in non-responders (~30%) compared to responders (~10%) and associated with poorer overall survival. Loss of both copies of B2M is found only in non-responders. B2M loss is likely a common mechanism of resistance to therapies targeting CTLA4 or PD1.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Presentación de Antígeno/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/inmunología , Presentación de Antígeno/genética , Antígeno CTLA-4/inmunología , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Pérdida de Heterocigocidad , Melanoma/genética , Melanoma/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Metástasis de la Neoplasia , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Mutación Puntual , Receptor de Muerte Celular Programada 1/inmunología , Microglobulina beta-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...