Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Elife ; 122024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650461

RESUMEN

Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC , Transportadores de Ácidos Monocarboxílicos , Serina , Serina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Humanos , Riñón/metabolismo , Ratones , Sodio/metabolismo , Transporte Biológico , Masculino
2.
J Physiol Sci ; 74(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166558

RESUMEN

In humans, uric acid is an end-product of purine metabolism. Urate excretion from the human kidney is tightly regulated by reabsorption and secretion. At least eleven genes have been identified as human renal urate transporters. However, it remains unclear whether all renal tubular cells express the same set of urate transporters. Here, we show renal tubular cells are divided into three distinct cell populations for urate handling. Analysis of healthy human kidneys at single-cell resolution revealed that not all tubular cells expressed the same set of urate transporters. Only 32% of tubular cells were related to both reabsorption and secretion, while the remaining tubular cells were related to either reabsorption or secretion at 5% and 63%, respectively. These results provide physiological insight into the molecular function of the transporters and renal urate handling on single-cell units. Our findings suggest that three different cell populations cooperate to regulate urate excretion from the human kidney, and our proposed framework is a step forward in broadening the view from the molecular to the cellular level of transport capacity.


Asunto(s)
Riñón , Ácido Úrico , Humanos , Ácido Úrico/metabolismo , Riñón/metabolismo , Transporte Biológico
3.
Cell Death Discov ; 9(1): 467, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135680

RESUMEN

IFN-alpha have been reported to suppress hepatitis B virus (HBV) cccDNA via APOBEC3 cytidine deaminase activity through interferon signaling. To develop a novel anti-HBV drug for a functional cure, we performed in silico screening of the binding compounds fitting the steric structure of the IFN-alpha-binding pocket in IFNAR2. We identified 37 compounds and named them in silico cccDNA modulator (iCDM)-1-37. We found that iCDM-34, a new small molecule with a pyrazole moiety, showed anti-HCV and anti-HBV activities. We measured the anti-HBV activity of iCDM-34 dependent on or independent of entecavir (ETV). iCDM-34 suppressed HBV DNA, pgRNA, HBsAg, and HBeAg, and also clearly exhibited additive inhibitory effects on the suppression of HBV DNA with ETV. We confirmed metabolic stability of iCDM-34 was stable in human liver microsomal fraction. Furthermore, anti-HBV activity in human hepatocyte-chimeric mice revealed that iCDM-34 was not effective as a single reagent, but when combined with ETV, it suppressed HBV DNA compared to ETV alone. Phosphoproteome and Western blotting analysis showed that iCDM-34 did not activate IFN-signaling. The transcriptome analysis of interferon-stimulated genes revealed no increase in expression, whereas downstream factors of aryl hydrocarbon receptor (AhR) showed increased levels of the expression. CDK1/2 and phospho-SAMHD1 levels decreased under iCDM-34 treatment. In addition, AhR knockdown inhibited anti-HCV activity of iCDM-34 in HCV replicon cells. These results suggest that iCDM-34 decreases the phosphorylation of SAMHD1 through CDK1/2, and suppresses HCV replicon RNA, HBV DNA, and pgRNA formation.

4.
Sci Rep ; 13(1): 13943, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626086

RESUMEN

Metastasis is the leading cause of mortality in cancer patients. L-type amino acid transporter 1 (LAT1, SLC7A5) is a Na+-independent neutral amino acid transporter highly expressed in various cancers to support their growth. Although high LAT1 expression is closely associated with cancer metastasis, its role in this process remains unclear. This study aimed to investigate the effect of LAT1 inhibition on cancer metastasis using B16-F10 melanoma mouse models. Our results demonstrated that nanvuranlat (JPH203), a high-affinity LAT1-selective inhibitor, suppressed B16-F10 cell proliferation, migration, and invasion. Similarly, LAT1 knockdown reduced cell proliferation, migration, and invasion. LAT1 inhibitors and LAT1 knockdown diminished B16-F10 lung metastasis in a lung metastasis model. Furthermore, nanvuranlat and LAT1 knockdown suppressed lung, spleen, and lymph node metastasis in an orthotopic metastasis model. We discovered that the LAT1 inhibitor reduced the cell surface expression of integrin αvß3. Our findings revealed that the downregulation of the mTOR signaling pathway, induced by LAT1 inhibitors, decreased the expression of integrin αvß3, contributing to the suppression of metastasis. These results highlight the critical role of LAT1 in cancer metastasis and suggest that LAT1 inhibition may serve as a potential target for anti-metastasis cancer therapy.


Asunto(s)
Neoplasias Pulmonares , Melanoma Experimental , Neoplasias Primarias Secundarias , Animales , Ratones , Sistemas de Transporte de Aminoácidos , Modelos Animales de Enfermedad , Integrina alfaVbeta3 , Transportador de Aminoácidos Neutros Grandes 1/genética , Neoplasias Pulmonares/genética , Melanoma Experimental/genética
5.
Nat Commun ; 14(1): 2174, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080960

RESUMEN

Mutations in the human ATP13A2 (PARK9), a lysosomal ATPase, cause Kufor-Rakeb Syndrome, an early-onset form of Parkinson's disease (PD). Here, we demonstrate that ATP13A2 functions as a lysosomal H+,K+-ATPase. The K+-dependent ATPase activity and the lysosomal K+-transport activity of ATP13A2 are inhibited by an inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase, thapsigargin, and K+-competitive inhibitors of gastric H+,K+-ATPase, such as vonoprazan and SCH28080. Interestingly, these H+,K+-ATPase inhibitors cause lysosomal alkalinization and α-synuclein accumulation, which are pathological hallmarks of PD. Furthermore, PD-associated mutants of ATP13A2 show abnormal expression and function. Our results suggest that the H+/K+-transporting function of ATP13A2 contributes to acidification and α-synuclein degradation in lysosomes.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Lisosomas/metabolismo , Mutación
6.
Matrix Biol Plus ; 15: 100118, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35990309

RESUMEN

The linkage between the basement membrane (BM) and cytoskeleton is crucial for muscle fiber stability and signal transduction. Mutations in the linkage molecules can cause various types of muscular dystrophies. The different severities and times of onset suggest that compensatory linkages occur at the sarcolemma. Cluster of differentiation 239 (CD239) binds to the α5 subunit of laminin-511 extracellularly and is connected to spectrin intracellularly, resulting in a linkage between the BM and cytoskeleton. In this study, we explored the linkage of laminin α5_CD239_spectrin in skeletal muscles. Although laminin α5, CD239, and spectrin were present in embryonic skeletal muscles, they disappeared in adult skeletal muscle tissues, except for the soleus and diaphragm. Laminin α5_CD239_spectrin was localized in the skeletal muscle tissues of Duchenne muscular dystrophy and congenital muscular dystrophy mouse models. The experimental regeneration of skeletal muscle increased the CD239-mediated linkage, indicating that it responds to regeneration, but not to genetic influence. Furthermore, in silico analysis showed that laminin α5_CD239_spectrin was upregulated by steroid therapy for muscular dystrophy. Therefore, CD239-mediated linkage may serve as a therapeutic target to prevent the progression of muscular dystrophy.

7.
Biochem J ; 479(11): 1127-1145, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35574701

RESUMEN

Voltage-sensing proteins generally consist of voltage-sensor domains and pore-gate domains, forming the voltage-gated ion channels. However, there are several unconventional voltage-sensor proteins that lack pore-gate domains, conferring them unique voltage-sensing machinery. TMEM266, which is expressed in cerebellum granule cells, is one of the interesting voltage-sensing proteins that has a putative intracellular coiled-coil and a functionally unidentified cytosolic region instead of a pore-gate domain. Here, we approached the molecular function of TMEM266 by performing co-immunoprecipitation experiments. We unexpectedly discovered that TMEM266 proteins natively interact with the novel short form splice variants that only have voltage-sensor domains and putative cytosolic coiled-coil region in cerebellum. The crystal structure of coiled-coil region of TMEM266 suggested that these coiled-coil regions play significant roles in forming homodimers. In vitro expression experiments supported the idea that short form TMEM266 (sTMEM266) or full length TMEM266 (fTMEM266) form homodimers. We also performed proximity labeling mass spectrometry analysis for fTMEM266 and sTMEM266 using Neuro-2A, neuroblastoma cells, and fTMEM266 showed more interacting molecules than sTMEM266, suggesting that the C-terminal cytosolic region in fTMEM266 binds to various targets. Finally, TMEM266-deficient animals showed the moderate abnormality in open-field test. The present study provides clues about the novel voltage-sensing mechanism mediated by TMEM266.


Asunto(s)
Cerebelo , Canales Iónicos , Animales , Canales Iónicos/metabolismo , Ratones
8.
Nat Commun ; 13(1): 2708, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577790

RESUMEN

Cystinuria is a genetic disorder characterized by overexcretion of dibasic amino acids and cystine, causing recurrent kidney stones and kidney failure. Mutations of the regulatory glycoprotein rBAT and the amino acid transporter b0,+AT, which constitute system b0,+, are linked to type I and non-type I cystinuria respectively and they exhibit distinct phenotypes due to protein trafficking defects or catalytic inactivation. Here, using electron cryo-microscopy and biochemistry, we discover that Ca2+ mediates higher-order assembly of system b0,+. Ca2+ stabilizes the interface between two rBAT molecules, leading to super-dimerization of b0,+AT-rBAT, which in turn facilitates N-glycan maturation and protein trafficking. A cystinuria mutant T216M and mutations of the Ca2+ site of rBAT cause the loss of higher-order assemblies, resulting in protein trapping at the ER and the loss of function. These results provide the molecular basis of system b0,+ biogenesis and type I cystinuria and serve as a guide to develop new therapeutic strategies against it. More broadly, our findings reveal an unprecedented link between transporter oligomeric assembly and protein-trafficking diseases.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos , Calcio , Cistinuria , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/ultraestructura , Calcio/química , Calcio/metabolismo , Cistina/metabolismo , Cistinuria/genética , Cistinuria/metabolismo , Humanos
9.
Sci Rep ; 12(1): 6353, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428804

RESUMEN

Renal type II sodium-dependent inorganic phosphate (Pi) transporters NaPi2a and NaPi2c cooperate with other organs to strictly regulate the plasma Pi concentration. A high Pi load induces expression and secretion of the phosphaturic hormones parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) that enhance urinary Pi excretion and prevent the onset of hyperphosphatemia. How FGF23 secretion from bone is increased by a high Pi load and the setpoint of the plasma Pi concentration, however, are unclear. Here, we investigated the role of Transmembrane protein 174 (Tmem174) and observed evidence for gene co-expression networks in NaPi2a and NaPi2c function. Tmem174 is localized in the renal proximal tubules and interacts with NaPi2a, but not NaPi2c. In Tmem174-knockout (KO) mice, the serum FGF23 concentration was markedly increased but increased Pi excretion and hypophosphatemia were not observed. In addition, Tmem174-KO mice exhibit reduced NaPi2a responsiveness to FGF23 and PTH administration. Furthermore, a dietary Pi load causes marked hyperphosphatemia and abnormal NaPi2a regulation in Tmem174-KO mice. Thus, Tmem174 is thought to be associated with FGF23 induction in bones and the regulation of NaPi2a to prevent an increase in the plasma Pi concentration due to a high Pi load and kidney injury.


Asunto(s)
Hiperfosfatemia , Hipofosfatemia , Proteínas de la Membrana , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Hipofosfatemia/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Hormona Paratiroidea , Proteínas de Transporte de Fosfato , Fosfatos/metabolismo
10.
Sci Transl Med ; 14(632): eaax7706, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35171652

RESUMEN

Cancer-specific cell surface antigens are ideal therapeutic targets for monoclonal antibody (mAb)-based therapy. Here, we report that multiple myeloma (MM), an incurable hematological malignancy, can be specifically targeted by an mAb that recognizes a ubiquitously present protein, CD98 heavy chain (hc) (also known as SLC3A2). We screened more than 10,000 mAb clones raised against MM cells and identified R8H283, an mAb that bound MM cells but not normal hematopoietic or nonhematopoietic cells. R8H283 specifically recognized CD98hc. R8H283 did not react with monomers of CD98hc; instead, it bound CD98hc in heterodimers with a CD98 light chain (CD98lc), a complex that functions as an amino acid transporter. CD98 heterodimers were abundant on MM cells and took up amino acids for constitutive production of immunoglobulin. Although CD98 heterodimers were also present on normal leukocytes, R8H283 did not react with them. The glycoforms of CD98hc present on normal leukocytes were distinct from those present on MM cells, which may explain the lack of R8H283 reactivity to normal leukocytes. R8H283 exerted anti-MM effects without damaging normal hematopoietic cells. These findings suggested that R8H283 is a candidate for mAb-based therapies for MM. In addition, our findings showed that a cancer-specific conformational epitope in a ubiquitous protein, which cannot be identified by transcriptome or proteome analyses, can be found by extensive screening of primary human tumor samples.


Asunto(s)
Anticuerpos Monoclonales , Mieloma Múltiple , Anticuerpos Monoclonales/uso terapéutico , Humanos
11.
Elife ; 112022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35014951

RESUMEN

Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Conflicting models have been proposed regarding the mechanisms of SV endocytosis, most notably clathrin/adaptor protein complex 2 (AP-2)-mediated endocytosis and clathrin-independent ultrafast endocytosis. Partitioning between these pathways has been suggested to be controlled by temperature and stimulus paradigm. We report on the comprehensive survey of six major SV proteins to show that SV endocytosis in mouse hippocampal neurons at physiological temperature occurs independent of clathrin while the endocytic retrieval of a subset of SV proteins including the vesicular transporters for glutamate and GABA depend on sorting by the clathrin adaptor AP-2. Our findings highlight a clathrin-independent role of the clathrin adaptor AP-2 in the endocytic retrieval of select SV cargos from the presynaptic cell surface and suggest a revised model for the endocytosis of SV membranes at mammalian central synapses.


Asunto(s)
Complejo 2 de Proteína Adaptadora/genética , Clatrina/metabolismo , Endocitosis , Sinapsis/fisiología , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Ratones
12.
Mol Cell Proteomics ; 21(5): 100206, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35085786

RESUMEN

Membrane proteins play essential roles in various cellular processes, such as nutrient transport, bioenergetic processes, cell adhesion, and signal transduction. Proteomics is one of the key approaches to exploring membrane proteins comprehensively. Bottom-up proteomics using LC-MS/MS has been widely used in membrane proteomics. However, the low abundance and hydrophobic features of membrane proteins, especially integral membrane proteins, make it difficult to handle the proteins and are the bottleneck for identification by LC-MS/MS. Herein, to improve the identification and quantification of membrane proteins, we have stepwisely evaluated methods of membrane enrichment for the sample preparation. The enrichment methods of membranes consisted of precipitation by ultracentrifugation and treatment by urea or alkaline solutions. The best enrichment method in the study, washing with urea after isolation of the membranes, resulted in the identification of almost twice as many membrane proteins compared with samples without the enrichment. Notably, the method significantly enhances the identified numbers of multispanning transmembrane proteins, such as solute carrier transporters, ABC transporters, and G-protein-coupled receptors, by almost sixfold. Using this method, we revealed the profiles of amino acid transport systems with the validation by functional assays and found more protein-protein interactions, including membrane protein complexes and clusters. Our protocol uses standard procedures in biochemistry, but the method was efficient for the in-depth analysis of membrane proteome in a wide range of samples.


Asunto(s)
Proteínas de la Membrana , Proteómica , Cromatografía Liquida/métodos , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Urea
13.
Nat Commun ; 12(1): 5301, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489423

RESUMEN

Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified. Here we show that arginine-rich poly-dipeptides impede the ability of NIRs to modify phase transitions of RBPs. Isothermal titration calorimetry and size-exclusion chromatography revealed that proline:arginine (PR) poly-dipeptides tightly bind karyopherin-ß2 (Kapß2) at 1:1 ratio. The nuclear magnetic resonances of Kapß2 perturbed by PR poly-dipeptides partially overlapped with those perturbed by the designed NLS peptide, suggesting that PR poly-dipeptides target the NLS binding site of Kapß2. The findings offer mechanistic insights into how phase transitions of RBPs are disabled in C9orf72-related neurodegeneration.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Proteína C9orf72/química , Péptidos/química , beta Carioferinas/química , Sitios de Unión , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Clonación Molecular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Péptidos/genética , Péptidos/metabolismo , Transición de Fase , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta Carioferinas/antagonistas & inhibidores , beta Carioferinas/genética , beta Carioferinas/metabolismo
14.
Antiviral Res ; 194: 105165, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34419484

RESUMEN

The development of novel antivirals to treat hepatitis B virus (HBV) infection is still needed because currently available drugs do not completely eradicate chronic HBV in some patients. Recently, troglitazone and ciglitazone, classified among the compounds including the thiazolidinedione (TZD) moiety, were found to inhibit HBV infection, but these compounds are not clinically available. In this study, we synthesized 11 TZD derivatives, compounds 1-11, and examined the effect of each compound on HBV infection in HepG2 cells expressing NTCP (HepG2/NTCP cells). Among the derivatives, (Z)-5-((4'-(naphthalen-1-yl)-[1,1'-biphenyl]-4-yl)methylene)thiazolidine-2,4-dione (compound 6) showed the highest antiviral activity, with an IC50 value of 0.3 µM and a selectivity index (SI) of 85, but compound 6 did not affect HCV infection. Treatment with compound 6 inhibited HBV infection in primary human hepatocytes (PHHs) but did not inhibit viral replication in HepG2.2.15 cells or HBV DNA-transfected Huh7 cells. Moreover, treatment with compound 6 significantly impaired hepatitis delta virus (HDV) infection and inhibited a step in HBV particle internalization but did not inhibit attachment of the preS1 lipopeptide or viral particles to the cell surface. These findings suggest that compound 6 interferes with HBV infection via inhibition of the internalization process.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Tiazolidinedionas/farmacología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/síntesis química , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Concentración 50 Inhibidora , Tiazolidinedionas/síntesis química
15.
iScience ; 24(5): 102412, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33997694

RESUMEN

Beginning of metastasis, cancer cells detach from the primary tumor and they can survive even under loss of anchorage; however, the detachment-elicited mechanisms have remained unknown. Here, we found that Na+,K+-ATPase α3-isoform (α3NaK) in human cancer cells is dynamically translocated from intracellular vesicles to the plasma membrane when the attached cells are detached and that this mechanism contributes to the survival of the detached (floating) cancer cells. α3NaK was detected in the plasma membrane of floating cancer cells in peritoneal fluids of patients, while it was in the cytoplasm of the cells in primary tumor tissues. On cancer cell detachment, we also found the focal-adhesion-kinase-dependent Ca2+ response that induces the α3NaK translocation via nicotinic acid adenine dinucleotide phosphate pathway. Activation of AMP-activated protein kinase was associated with the translocated α3NaK in the plasma membrane. Collectively, our study identifies a unique mechanism for survival of detached cancer cells, opening up new opportunities for development of cancer medicines.

16.
Yakugaku Zasshi ; 141(4): 501-510, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-33790117

RESUMEN

Nutrients are essential for all living organisms. Because growing cancer cells have strong metabolic demands, nutrient transporters are constitutively increased to facilitate the nutrient uptake. Among these nutrient transporters, L-type amino acid transporter 1 (LAT1), which transports large neutral amino acids including essential amino acids, is critical for cancer growth. Therefore, LAT1 has been considered as an attractive target for diagnosis and therapy of cancers. We have developed several lines of compounds for cancer diagnosis and therapy. To diagnose cancer by using positron emission tomography (PET) probes, we have created amino acid derivatives which are selectively transported by LAT1 and accumulated in cancer cells. In addition to amino acid derivatives as the LAT1 inhibitors, we also have made non-amino acid small compounds as anti-cancer drugs which inhibit LAT1 function and suppress tumor growth. The LAT1 targeting anti-cancer drug showed low toxicity but strong effects on various types of cancer cells in animal models. The novel PET probe is approved for clinical research and the new anti-cancer drug has been under clinical trial. Small compounds targeting the amino acid transporter bring us new tools for cancer diagnosis and therapy.


Asunto(s)
Aminoácidos Esenciales/metabolismo , Descubrimiento de Drogas/métodos , Transportador de Aminoácidos Neutros Grandes 1 , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Nutrientes/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Humanos , Transportador de Aminoácidos Neutros Grandes 1/efectos de los fármacos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/fisiología , Ratones , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/patología , Tomografía de Emisión de Positrones , Serina-Treonina Quinasas TOR
17.
EJNMMI Phys ; 8(1): 4, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33432383

RESUMEN

BACKGROUND: An individual dosimetry system is essential for the evaluation of precise doses in nuclear medicine. The purpose of this study was to develop a system for calculating not only absorbed doses but also EQDX(α/ß) from the PET-CT images of patients for targeted alpha therapy (TAT), considering the dose dependence of the relative biological effectiveness, the dose-rate effect, and the dose heterogeneity. METHODS: A general-purpose Monte Carlo particle transport code PHITS was employed as the dose calculation engine in the system, while the microdosimetric kinetic model was used for converting the absorbed dose to EQDX(α/ß). PHITS input files for describing the geometry and source distribution of a patient are automatically created from PET-CT images, using newly developed modules of the radiotherapy package based on PHITS (RT-PHITS). We examined the performance of the system by calculating several organ doses using the PET-CT images of four healthy volunteers after injecting 18F-NKO-035. RESULTS: The deposition energy map obtained from our system seems to be a blurred image of the corresponding PET data because annihilation γ-rays deposit their energies rather far from the source location. The calculated organ doses agree with the corresponding data obtained from OLINDA 2.0 within 20%, indicating the reliability of our developed system. Test calculations by replacing the labeled radionuclide from 18F to 211At suggest that large dose heterogeneity in a target volume is expected in TAT, resulting in a significant decrease of EQDX(α/ß) for higher-activity injection. CONCLUSIONS: As an extension of RT-PHITS, an individual dosimetry system for nuclear medicine was developed based on PHITS coupled with the microdosimetric kinetic model. It enables us to predict the therapeutic and side effects of TAT based on the clinical data largely available from conventional external radiotherapy.

18.
FASEB J ; 35(1): e21262, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368618

RESUMEN

The excretion and reabsorption of uric acid both to and from urine are tightly regulated by uric acid transporters. Metabolic syndrome conditions, such as obesity, hypercholesterolemia, and insulin resistance, are believed to regulate the expression of uric acid transporters and decrease the excretion of uric acid. However, the mechanisms driving cholesterol impacts on uric acid transporters have been unknown. Here, we show that cholesterol metabolite 27-hydroxycholesterol (27HC) upregulates the uric acid reabsorption transporter URAT1 encoded by SLC22A12 via estrogen receptors (ER). Transcriptional motif analysis showed that the SLC22A12 gene promoter has more estrogen response elements (EREs) than other uric acid reabsorption transporters such as SLC22A11 and SLC22A13, and 27HC-activated SLC22A12 gene promoter via ER through EREs. Furthermore, 27HC increased SLC22A12 gene expression in human kidney organoids. Our results suggest that in hypercholesterolemic conditions, elevated levels of 27HC derived from cholesterol induce URAT1/SLC22A12 expression to increase uric acid reabsorption, and thereby, could increase serum uric acid levels.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hidroxicolesteroles/farmacología , Riñón/metabolismo , Transportadores de Anión Orgánico/biosíntesis , Proteínas de Transporte de Catión Orgánico/biosíntesis , Receptores de Estrógenos/metabolismo , Humanos , Transportadores de Anión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/genética , Organoides/metabolismo , Receptores de Estrógenos/genética
19.
J Exp Clin Cancer Res ; 39(1): 266, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256804

RESUMEN

BACKGROUND: Tumor angiogenesis is regarded as a rational anti-cancer target. The efficacy and indications of anti-angiogenic therapies in clinical practice, however, are relatively limited. Therefore, there still exists a demand for revealing the distinct characteristics of tumor endothelium that is crucial for the pathological angiogenesis. L-type amino acid transporter 1 (LAT1) is well known to be highly and broadly upregulated in tumor cells to support their growth and proliferation. In this study, we aimed to establish the upregulation of LAT1 as a novel general characteristic of tumor-associated endothelial cells as well, and to explore the functional relevance in tumor angiogenesis. METHODS: Expression of LAT1 in tumor-associated endothelial cells was immunohistologically investigated in human pancreatic ductal adenocarcinoma (PDA) and xenograft- and syngeneic mouse tumor models. The effects of pharmacological and genetic ablation of endothelial LAT1 were examined in aortic ring assay, Matrigel plug assay, and mouse tumor models. The effects of LAT1 inhibitors and gene knockdown on cell proliferation, regulation of translation, as well as on the VEGF-A-dependent angiogenic processes and intracellular signaling were investigated in in vitro by using human umbilical vein endothelial cells. RESULTS: LAT1 was highly expressed in vascular endothelial cells of human PDA but not in normal pancreas. Similarly, high endothelial LAT1 expression was observed in mouse tumor models. The angiogenesis in ex/in vivo assays was suppressed by abrogating the function or expression of LAT1. Tumor growth in mice was significantly impaired through the inhibition of angiogenesis by targeting endothelial LAT1. LAT1-mediated amino acid transport was fundamental to support endothelial cell proliferation and translation initiation in vitro. Furthermore, LAT1 was required for the VEGF-A-dependent migration, invasion, tube formation, and activation of mTORC1, suggesting a novel cross-talk between pro-angiogenic signaling and nutrient-sensing in endothelial cells. CONCLUSIONS: These results demonstrate that the endothelial LAT1 is a novel key player in tumor angiogenesis, which regulates proliferation, translation, and pro-angiogenic VEGF-A signaling. This study furthermore indicates a new insight into the dual functioning of LAT1 in tumor progression both in tumor cells and stromal endothelium. Therapeutic inhibition of LAT1 may offer an ideal option to potentiate anti-angiogenic therapies.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Carcinoma Ductal Pancreático/irrigación sanguínea , Endotelio Vascular/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias Pancreáticas/irrigación sanguínea , Factor A de Crecimiento Endotelial Vascular/metabolismo , Sistema de Transporte de Aminoácidos y+L/metabolismo , Animales , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Endotelio Vascular/patología , Femenino , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neoplasias Pancreáticas/metabolismo , Transducción de Señal
20.
Protein Sci ; 29(12): 2398-2407, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33016372

RESUMEN

System xc - is an amino acid antiporter that imports L-cystine into cells and exports intracellular L-glutamate, at a 1:1 ratio. As L-cystine is an essential precursor for glutathione synthesis, system xc - supports tumor cell growth through glutathione-based oxidative stress resistance and is considered as a potential therapeutic target for cancer treatment. System xc - consists of two subunits, the light chain subunit SLC7A11 (xCT) and the heavy chain subunit SLC3A2 (also known as CD98hc or 4F2hc), which are linked by a conserved disulfide bridge. Although the recent structures of another SLC7 member, L-type amino acid transporter 1 (LAT1) in complex with CD98hc, have provided the structural basis toward understanding the amino acid transport mechanism, the detailed molecular mechanism of xCT remains unknown. To revealthe molecular mechanism, we performed single-particle analyses of the xCT-CD98hc complex. As wild-type xCT-CD98hc displayed poor stability and could not be purified to homogeneity, we applied a consensus mutagenesis approach to xCT. The consensus mutated construct exhibited increased stability as compared to the wild-type, and enabled the cryoelectron microscopy (cryo-EM) map to be obtained at 6.2 Å resolution by single-particle analysis. The cryo-EM map revealed sufficient electron density to assign secondary structures. In the xCT structure, the hash and arm domains are well resolved, whereas the bundle domain shows some flexibility. CD98hc is positioned next to the xCT transmembrane domain. This study provides the structural basis of xCT, and our consensus-based strategy could represent a good choice toward solving unstable protein structures.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/química , Sistema de Transporte de Aminoácidos y+/ultraestructura , Microscopía por Crioelectrón , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Cadena Pesada de la Proteína-1 Reguladora de Fusión/química , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/ultraestructura , Células HEK293 , Humanos , Mutagénesis , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Células Sf9 , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA