Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Opin Pharmacol ; 67: 102313, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36343481

RESUMEN

Mammalian RAD51 paralogs are essential for cell survival and are critical for RAD51-mediated repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the molecular mechanism by which RAD51 paralogs participate in HR is largely unclear. Germline mutations in RAD51 paralogs are associated with breast and ovarian cancers and Fanconi anemia-like disorder, underscoring the crucial roles of RAD51 paralogs in genome maintenance and tumor suppression. Despite their discovery over three decades ago, the essential functions of RAD51 paralogs in cell survival and genome stability remain obscure. Recent studies unravel DSB repair independent functions of RAD51 paralogs in replication stress responses. Here, we highlight the recent findings that uncovered the novel functions of RAD51 paralogs in replication fork progression, its stability, and restart and discuss RAD51 paralogs as a potential therapeutic target for cancer treatment.


Asunto(s)
Reparación del ADN , Recombinasa Rad51 , Humanos , Recombinación Homóloga , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
2.
Redox Biol ; 46: 102062, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34392160

RESUMEN

The persistence of Mycobacterium tuberculosis (Mtb) is a major problem in managing tuberculosis (TB). Host-generated nitric oxide (NO) is perceived as one of the signals by Mtb to reprogram metabolism and respiration for persistence. However, the mechanisms involved in NO sensing and reorganizing Mtb's physiology are not fully understood. Since NO damages iron-sulfur (Fe-S) clusters of essential enzymes, the mechanism(s) involved in regulating Fe-S cluster biogenesis could help Mtb persist in host tissues. Here, we show that a transcription factor SufR (Rv1460) senses NO via its 4Fe-4S cluster and promotes persistence of Mtb by mobilizing the Fe-S cluster biogenesis system; suf operon (Rv1460-Rv1466). Analysis of anaerobically purified SufR by UV-visible spectroscopy, circular dichroism, and iron-sulfide estimation confirms the presence of a 4Fe-4S cluster. Atmospheric O2 and H2O2 gradually degrade the 4Fe-4S cluster of SufR. Furthermore, electron paramagnetic resonance (EPR) analysis demonstrates that NO directly targets SufR 4Fe-4S cluster by forming a protein-bound dinitrosyl-iron-dithiol complex. DNase I footprinting, gel-shift, and in vitro transcription assays confirm that SufR directly regulates the expression of the suf operon in response to NO. Consistent with this, RNA-sequencing of MtbΔsufR demonstrates deregulation of the suf operon under NO stress. Strikingly, NO inflicted irreversible damage upon Fe-S clusters to exhaust respiratory and redox buffering capacity of MtbΔsufR. Lastly, MtbΔsufR failed to recover from a NO-induced non-growing state and displayed persistence defect inside immune-activated macrophages and murine lungs in a NO-dependent manner. Data suggest that SufR is a sensor of NO that supports persistence by reprogramming Fe-S cluster metabolism and bioenergetics.


Asunto(s)
Proteínas Hierro-Azufre , Mycobacterium tuberculosis , Animales , Espectroscopía de Resonancia por Spin del Electrón , Peróxido de Hidrógeno , Proteínas Hierro-Azufre/genética , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Operón
4.
PLoS Genet ; 16(4): e1008701, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251466

RESUMEN

FANCJ helicase mutations are known to cause hereditary breast and ovarian cancers as well as bone marrow failure syndrome Fanconi anemia. FANCJ plays an important role in the repair of DNA inter-strand crosslinks and DNA double-strand breaks (DSBs) by homologous recombination (HR). Nonetheless, the molecular mechanism by which FANCJ controls HR mediated DSB repair is obscure. Here, we show that FANCJ promotes DNA end resection by recruiting CtIP to the sites of DSBs. This recruitment of CtIP is dependent on FANCJ K1249 acetylation. Notably, FANCJ acetylation is dependent on FANCJ S990 phosphorylation by CDK. The CDK mediated phosphorylation of FANCJ independently facilitates its interaction with BRCA1 at damaged DNA sites and promotes DNA end resection by CtIP recruitment. Strikingly, mutational studies reveal that ATP binding competent but hydrolysis deficient FANCJ partially supports end resection, indicating that in addition to the scaffolding role of FANCJ in CtIP recruitment, its helicase activity is important for promoting end resection. Together, these data unravel a novel function of FANCJ helicase in DNA end resection and provide mechanistic insights into its role in repairing DSBs by HR and in genome maintenance.


Asunto(s)
Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , ARN Helicasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , ARN Helicasas/genética
5.
Cell Rep ; 29(3): 551-559.e4, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618626

RESUMEN

ATR kinase-mediated replication checkpoint is vital for genome maintenance following replication stress. Previously, we showed that XRCC2-RAD51D (DX2) sub-complex of RAD51 paralogs restrains active DNA synthesis during dNTP alterations, in a manner dependent on ATR-mediated phosphorylation of XRCC2. Here, we find that unrestrained fork progression in XRCC2 deficiency and phosphorylation defect causes replication-associated errors, subsequently resulting in genome-wide double-strand breaks (DSBs) and early activation of ATM signaling. Cells defective in XRCC2 phosphorylation exhibit ATM/ATR-mediated early activation of XRCC3 during perturbed replication, which facilitates recombination-mediated repair of the post-replicative DNA damage and thereby promotes cell viability. Collectively, our findings identify collaborative roles of RAD51 paralog complexes during replication stress and reveal their differential regulation by ATR signaling to promote cell survival and genome integrity.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Replicación del ADN , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Hidroxiurea/farmacología , Morfolinas/farmacología , Mutagénesis Sitio-Dirigida , Fosforilación , Pironas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/genética , Transducción de Señal
7.
FEBS J ; 286(11): 2062-2086, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30821905

RESUMEN

Unresolved G-quadruplex (G4) DNA secondary structures impede DNA replication and can lead to DNA breaks and to genome instability. Helicases are known to unwind G4 structures and thereby facilitate genome duplication. Escherichia coli UvrD is a multifunctional helicase that participates in DNA repair, recombination and replication. Previously, we had demonstrated a novel role of E. coli UvrD helicase in resolving G4 structures. Mycobacterium tuberculosis genome encodes two orthologs of E. coli UvrD helicase, UvrD1 and UvrD2. It is unclear whether UvrD1 or UvrD2 or both helicases unwind G4 DNA structures. Here, we demonstrate that M. tuberculosis UvrD1 and UvrD2 unwind G4 tetraplexes. Both helicases were proficient in resolving previously characterized tetramolecular G4 structures in an ATP hydrolysis and single-stranded 3'-tail-dependent manner. Notably, M. tuberculosis UvrD1 and UvrD2 were efficient in unwinding G4 structures derived from the potential G4 forming sequences present in the M. tuberculosis genome. These data suggest an extended role for M. tuberculosis UvrD1 and UvrD2 helicases in resolving G4 DNA structures and provide insights into the maintenance of genome integrity via G4 DNA resolution.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , G-Cuádruplex , Mycobacterium tuberculosis/enzimología , Adenosina Trifosfato/metabolismo , ADN de Cadena Simple/metabolismo , Cinética , Mycobacterium tuberculosis/genética , Conformación de Ácido Nucleico , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
8.
Cell Rep ; 25(12): 3273-3282.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566856

RESUMEN

RAD51 paralogs are essential for maintenance of genomic integrity through protection of stalled replication forks and homology-directed repair (HDR) of double-strand breaks. Here, we find that a subset of RAD51 paralogs, XRCC2 (FANCU) and its binding partner RAD51D, restrain active DNA synthesis during dinucleotide triphosphate (dNTP) alterations in a manner independent of HDR. The absence of XRCC2 is associated with increased levels of RRM2, the regulatory subunit of ribonucleotide reductase (RNR), and concomitantly high nucleotide pools, leading to unrestrained fork progression and accumulation of DNA damage during dNTP alterations. Mechanistically, this function is independent of redox signaling and RAD51-mediated fork reversal and is regulated by ataxia-telangiectasia and Rad3-related (ATR) signaling through phosphorylation of XRCC2 (Ser247). Together, these findings identify roles of RAD51 paralogs in the control of replication fork progression and maintenance of genome stability during nucleotide pool alterations.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Nucleótidos/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , ADN/biosíntesis , Humanos , Cinética , Modelos Biológicos , Oxidación-Reducción , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Ribonucleótido Reductasas/metabolismo , Transducción de Señal , Estrés Fisiológico
9.
IUBMB Life ; 70(8): 786-794, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30240108

RESUMEN

Structure-specific helicases, such as RecG, play an important role in the resolution of recombination intermediates. A bioinformatic analysis of mycobacterial genomes led to the identification of a protein (RecGwed ) with a C-terminal "edge" domain, similar to the wedge domain of RecG. RecGwed is predominately found in the phylum Actinobacteria and in few human pathogens. Mycobacterium smegmatis RecGwed was able to bind branched DNA structures in vitro but failed to interact with single- or double-stranded DNA. The expression of recGwed in M. smegmatis cells was up-regulated during stationary phase/UV damage and down-regulated during MMS/H2 O2 treatment. These observations indicate the possible involvement of RecGwed in transactions during recombination events, that proceed though branched DNA intermediates. © 2018 IUBMB Life, 70(8):786-794, 2018.


Asunto(s)
Biología Computacional , ADN Helicasas/genética , Genoma Bacteriano/genética , Mycobacterium smegmatis/genética , ADN/efectos de los fármacos , ADN/genética , ADN/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , ADN Helicasas/química , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Peróxido de Hidrógeno/farmacología , Mycobacterium smegmatis/enzimología , Conformación de Ácido Nucleico/efectos de los fármacos , Conformación de Ácido Nucleico/efectos de la radiación , Rayos Ultravioleta
10.
Mol Cell Biol ; 38(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29158291

RESUMEN

Mechanisms underlying mitochondrial genome maintenance have recently gained wide attention, as mutations in mitochondrial DNA (mtDNA) lead to inherited muscular and neurological diseases, which are linked to aging and cancer. It was previously reported that human RAD51, RAD51C, and XRCC3 localize to mitochondria upon oxidative stress and are required for the maintenance of mtDNA stability. Since RAD51 and RAD51 paralogs are spontaneously imported into mitochondria, their precise role in mtDNA maintenance under unperturbed conditions remains elusive. Here, we show that RAD51C/XRCC3 is an additional component of the mitochondrial nucleoid having nucleus-independent roles in mtDNA maintenance. RAD51C/XRCC3 localizes to the mtDNA regulatory regions in the D-loop along with the mitochondrial polymerase POLG, and this recruitment is dependent upon Twinkle helicase. Moreover, upon replication stress, RAD51C and XRCC3 are further enriched at the mtDNA mutation hot spot region D310. Notably, the absence of RAD51C/XRCC3 affects the stability of POLG on mtDNA. As a consequence, RAD51C/XRCC3-deficient cells exhibit reduced mtDNA synthesis and increased lesions in the mitochondrial genome, leading to overall unhealthy mitochondria. Together, these findings lead to the proposal of a mechanism for a direct role of RAD51C/XRCC3 in maintaining mtDNA integrity under replication stress conditions.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Genoma Mitocondrial , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cricetulus , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estabilidad Proteica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
11.
Biochem J ; 474(21): 3579-3597, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28916651

RESUMEN

G-quadruplex (G4) secondary structures have been implicated in various biological processes, including gene expression, DNA replication and telomere maintenance. However, unresolved G4 structures impede replication progression which can lead to the generation of DNA double-strand breaks and genome instability. Helicases have been shown to resolve G4 structures to facilitate faithful duplication of the genome. Escherichia coli UvrD (EcUvrD) helicase plays a crucial role in nucleotide excision repair, mismatch repair and in the regulation of homologous recombination. Here, we demonstrate a novel role of E. coli and Neisseria gonorrhoeae UvrD in resolving G4 tetraplexes. EcUvrD and Ngonorrhoeae UvrD were proficient in unwinding previously characterized tetramolecular G4 structures. Notably, EcUvrD was equally efficient in resolving tetramolecular and bimolecular G4 DNA that were derived from the potential G4-forming sequences from the genome of E. coli Interestingly, in addition to resolving intermolecular G4 structures, EcUvrD was robust in unwinding intramolecular G4 structures. These data for the first time provide evidence for the role of UvrD in the resolution of G4 structures, which has implications for the in vivo role of UvrD helicase in G4 DNA resolution and genome maintenance.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Escherichia coli/metabolismo , G-Cuádruplex , Neisseria gonorrhoeae/metabolismo , ADN Helicasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Neisseria gonorrhoeae/genética
12.
Nucleic Acids Res ; 45(15): 8886-8900, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28911102

RESUMEN

The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression.


Asunto(s)
Proteína BRCA1/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Cromátides/química , ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Reparación del ADN por Recombinación , Animales , Proteína BRCA1/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células CHO , Línea Celular Tumoral , Cromátides/metabolismo , Cricetulus , ADN/metabolismo , Roturas del ADN de Doble Cadena , Desoxirribonucleasas de Localización Especificada Tipo II/farmacología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación de la Expresión Génica , Recombinación Homóloga/efectos de los fármacos , Humanos , Mutación , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Unión Proteica , Proteínas de Saccharomyces cerevisiae/farmacología
13.
Carcinogenesis ; 37(2): 145-156, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26678223

RESUMEN

Although DNA interstrand crosslinking (ICL) agents such as mitomycin C, cisplatin and psoralen serve as potent anticancer drugs, these agents are known to have dose-limiting toxic effects on normal cells. Moreover, tumor resistance to these agents has been reported. Here, we show that trans-dichlorooxovanadium (IV) complex of pyrenyl terpyridine (VDC) is a novel photoinducible DNA crosslinking agent. By a combination of in vitro and ex vivo experiments including plasmid-based assays, we find that VDC forms monoadducts on the DNA and can be activated by UV-A and visible light to generate DNA interstrand crosslinks. VDC efficiently activates Fanconi anemia (FA) pathway of DNA interstrand crosslink repair. Strikingly, photoinduction of VDC induces prolonged activation of cell cycle checkpoint and a high degree of cell death in homologous recombination (HR)/ICL repair defective cells. Moreover, VDC specifically targets cells that express pathological RAD51C mutants. These data imply that VDC can be potentially used for cancer therapy and suggest that tumors arising in patients with gene mutations in FA and HR repair pathway can be specifically targeted by a photoactivatable VDC.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacocinética , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Neoplasias/patología , Fármacos Fotosensibilizantes/farmacología , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Reactivos de Enlaces Cruzados/farmacología , Aductos de ADN/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Neoplasias/genética
14.
Sci Rep ; 5: 15045, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26459859

RESUMEN

Thrombocytopenia is one of the most frequently observed secondary complications in many pathological conditions including liver diseases, where hyperbilirubinemia is very common. The present study sought to find the cause of thrombocytopenia in unconjugated hyperbilirubinemic conditions. Unconjugated bilirubin (UCB), an end-product of heme catabolism, is known to have pro-oxidative and cytotoxic effects at high serum concentration. We investigated the molecular mechanism underlying the pro-apoptotic effect of UCB on human platelets in vitro, and followed it up with studies in phenylhydrazine-induced hyperbilirubinemic rat model and hyperbilirubinemic human subjects. UCB is indeed found to significantly induce platelet apoptotic events including elevated endogenous reactive oxygen species generation, mitochondrial membrane depolarization, increased intracellular calcium levels, cardiolipin peroxidation and phosphatidylserine externalization (p < 0.001) as evident by FACS analysis. The immunoblots show the elevated levels of cytosolic cytochrome c and caspase activation in UCB-treated platelets. Further, UCB is found to induce mitochondrial ROS generation leading to p38 activation, followed by downstream activation of p53, ultimately resulting in altered expression of Bcl-2 and Bax proteins as evident from immunoblotting. All these parameters conclude that elevated unconjugated bilirubin causes thrombocytopenia by stimulating platelet apoptosis via mitochondrial ROS-induced p38 and p53 activation.


Asunto(s)
Apoptosis , Bilirrubina/metabolismo , Plaquetas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Bilirrubina/farmacología , Plaquetas/efectos de los fármacos , Calcio/metabolismo , Cardiolipinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Hiperbilirrubinemia/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Ratas , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
15.
Nucleic Acids Res ; 43(20): 9835-55, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26354865

RESUMEN

Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/fisiología , ADN/metabolismo , Secuencias de Aminoácidos , Animales , Neoplasias de la Mama/genética , Línea Celular , Cromatina/metabolismo , Sitios Frágiles del Cromosoma , Cricetinae , Cricetulus , Roturas del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Femenino , Células HeLa , Humanos , Complejos Multienzimáticos , Mutación , Neoplasias Ováricas/genética , Fase S
16.
J Biol Chem ; 290(40): 24119-39, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26276393

RESUMEN

Aberrant DNA replication, defects in the protection, and restart of stalled replication forks are major causes of genome instability in all organisms. Replication fork reversal is emerging as an evolutionarily conserved physiological response for restart of stalled forks. Escherichia coli RecG, RuvAB, and RecA proteins have been shown to reverse the model replication fork structures in vitro. However, the pathways and the mechanisms by which Mycobacterium tuberculosis, a slow growing human pathogen, responds to different types of replication stress and DNA damage are unclear. Here, we show that M. tuberculosis RecG rescues E. coli ΔrecG cells from replicative stress. The purified M. tuberculosis RecG (MtRecG) and RuvAB (MtRuvAB) proteins catalyze fork reversal of model replication fork structures with and without a leading strand single-stranded DNA gap. Interestingly, single-stranded DNA-binding protein suppresses the MtRecG- and MtRuvAB-mediated fork reversal with substrates that contain lagging strand gap. Notably, our comparative studies with fork structures containing template damage and template switching mechanism of lesion bypass reveal that MtRecG but not MtRuvAB or MtRecA is proficient in driving the fork reversal. Finally, unlike MtRuvAB, we find that MtRecG drives efficient reversal of forks when fork structures are tightly bound by protein. These results provide direct evidence and valuable insights into the underlying mechanism of MtRecG-catalyzed replication fork remodeling and restart pathways in vivo.


Asunto(s)
Proteínas Bacterianas/metabolismo , Replicación del ADN , Mycobacterium tuberculosis/metabolismo , Rec A Recombinasas/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Prueba de Complementación Genética , Genoma Bacteriano , Inestabilidad Genómica , Mutación , Conformación de Ácido Nucleico , Oligonucleótidos
17.
PLoS One ; 10(6): e0127558, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26083398

RESUMEN

Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 µM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.


Asunto(s)
Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Antimetabolitos Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , MAP Quinasa Quinasa 4/genética , Metotrexato/farmacología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Plaquetas/citología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Regulación de la Expresión Génica , Humanos , MAP Quinasa Quinasa 4/metabolismo , Potencial de la Membrana Mitocondrial , Metotrexato/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Cultivo Primario de Células , Transducción de Señal , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína Letal Asociada a bcl/genética , Proteína Letal Asociada a bcl/metabolismo
18.
Carcinogenesis ; 36(1): 13-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25292178

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) inhibitors are actively under clinical trials for the treatment of breast and ovarian cancers that arise due to mutations in BRCA1 and BRCA2. The RAD51 paralog RAD51C has been identified as a breast and ovarian cancer susceptibility gene. The pathological RAD51C mutants that were identified in cancer patients are hypomorphic with partial repair function. However, targeting cancer cells that express hypomorphic mutants of RAD51C is highly challenging. Here, we report that RAD51C-deficient cells can be targeted by a 'synthetic lethal' approach using PARP inhibitor and this sensitivity was attributed to accumulation of cells in the G2/M and chromosomal aberrations. In addition, spontaneous hyperactivation of PARP1 was evident in RAD51C-deficient cells. Interestingly, RAD51C-negative cells exhibited enhanced recruitment of non-homologous end joining (NHEJ) proteins onto chromatin and this accumulation correlated with increased activity of error-prone NHEJ as well as genome instability leading to cell death. Notably, inhibition of DNA-PKcs or depletion of KU70 or Ligase IV rescued this phenotype. Strikingly, stimulation of NHEJ by low dose of ionizing radiation (IR) in the PARP inhibitor-treated RAD51C-deficient cells and cells expressing pathological RAD51C mutants induced enhanced toxicity 'synergistically'. These results demonstrate that cancer cells arising due to hypomorphic mutations in RAD51C can be specifically targeted by a 'synergistic approach' and imply that this strategy can be potentially applied to cancers with hypomorphic mutations in other homologous recombination pathway genes.


Asunto(s)
Neoplasias de la Mama/patología , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/genética , Mutación/genética , Poli(ADP-Ribosa) Polimerasas/genética , Recombinación Genética , Western Blotting , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Ciclo Celular , Proliferación Celular , Cromatina/genética , Aberraciones Cromosómicas , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Inestabilidad Genómica , Células HeLa , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Células Tumorales Cultivadas
19.
Dalton Trans ; 43(35): 13358-69, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25069796

RESUMEN

Oxovanadium(IV) complexes [VO(R-tpy)(cur)](ClO4) (1, 2) of curcumin (Hcur) and terpyridine ligands (R-tpy) where R is phenyl (phtpy in 1) or p-triphenylphosphonium methylphenyl bromide (C6H4CH2PPh3Br) (TPP-phtpy in 2) were prepared and characterized and their DNA photocleavage activity, photocytotoxicity and cellular localization in cancer cells (HeLa and MCF-7) were studied. Acetylacetonate (acac) complexes [VO(R-tpy)(acac)](ClO4) of phtpy (3) and TPP-phtpy (4) were prepared and used as the control species. These complexes showed efficient cleavage of pUC19 DNA in visible light of 454 nm and near-IR light of 705 nm. Complexes 1 and 2 showed significant photocytotoxicity in visible light of 400-700 nm. FACS analysis showed sub-G1/G0 phase cell-cycle arrest in cancer cells when treated with 1 and 2 in visible light in comparison with the dark controls. Fluorescence microscopic studies revealed specific localization of the p-triphenylphosphonium complex 2 in the mitochondria of MCF-7 cancer cells whereas no such specificity was observed for complex 1.


Asunto(s)
Curcumina/química , Citotoxinas/química , Sistemas de Liberación de Medicamentos/métodos , Mitocondrias/química , Vanadatos/química , Animales , Bovinos , Supervivencia Celular/efectos de los fármacos , Curcumina/administración & dosificación , Citotoxinas/administración & dosificación , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Células MCF-7 , Microscopía Confocal/métodos , Mitocondrias/efectos de los fármacos , Estimulación Luminosa/métodos , Vanadatos/administración & dosificación
20.
J Biol Chem ; 289(36): 25112-36, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25059658

RESUMEN

The significance of G-quadruplexes and the helicases that resolve G4 structures in prokaryotes is poorly understood. The Mycobacterium tuberculosis genome is GC-rich and contains >10,000 sequences that have the potential to form G4 structures. In Escherichia coli, RecQ helicase unwinds G4 structures. However, RecQ is absent in M. tuberculosis, and the helicase that participates in G4 resolution in M. tuberculosis is obscure. Here, we show that M. tuberculosis DinG (MtDinG) exhibits high affinity for ssDNA and ssDNA translocation with a 5' → 3' polarity. Interestingly, MtDinG unwinds overhangs, flap structures, and forked duplexes but fails to unwind linear duplex DNA. Our data with DNase I footprinting provide mechanistic insights and suggest that MtDinG is a 5' → 3' polarity helicase. Notably, in contrast to E. coli DinG, MtDinG catalyzes unwinding of replication fork and Holliday junction structures. Strikingly, we find that MtDinG resolves intermolecular G4 structures. These data suggest that MtDinG is a multifunctional structure-specific helicase that unwinds model structures of DNA replication, repair, and recombination as well as G4 structures. We finally demonstrate that promoter sequences of M. tuberculosis PE_PGRS2, mce1R, and moeB1 genes contain G4 structures, implying that G4 structures may regulate gene expression in M. tuberculosis. We discuss these data and implicate targeting G4 structures and DinG helicase in M. tuberculosis could be a novel therapeutic strategy for culminating the infection with this pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , G-Cuádruplex , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Biocatálisis , Dicroismo Circular , Huella de ADN/métodos , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , ADN Cruciforme/química , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desoxirribonucleasa I/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...