Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697116

RESUMEN

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Asunto(s)
Factor de Unión a CCCTC , Diferenciación Celular , Interferón gamma , Interleucina-22 , Interleucinas , Células TH1 , Animales , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Células TH1/inmunología , Ratones , Diferenciación Celular/inmunología , Interferón gamma/metabolismo , Sitios de Unión , Interleucinas/metabolismo , Interleucinas/genética , Elementos de Facilitación Genéticos/genética , Ratones Endogámicos C57BL , Cromatina/metabolismo , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Toxoplasmosis/genética , Regulación de la Expresión Génica , Toxoplasma/inmunología , Citocinas/metabolismo , Linaje de la Célula , Células Th17/inmunología
2.
Jpn J Clin Oncol ; 54(1): 47-53, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37791389

RESUMEN

BACKGROUND: Accumulating evidence has demonstrated platinum-based chemotherapy followed by maintenance therapy with a poly Adenosine diphosphate (ADP)-ribose polymerase inhibitor (olaparib) show benefits in unresectable pancreatic cancer with a germline (g)BRCA1/2 mutation. Evaluation of the germline BRCA1 and BRCA2 mutation is essential for making decisions on a treatment strategy for patients with unresectable pancreatic cancer. However, the detection rates of germline BRCA1 and BRCA2 mutations and efficacy of maintenance with olaparib remain undetermined, prospectively, in Japan. METHODS & RESULTS: In this prospective analysis, the rate of germline BRCA1 and BRCA2 mutations and efficacy of chemotherapy were analyzed in 136 patients with pancreatic cancer who underwent BRACAnalysis® (85 patients) or FoundationOne® CDx (51 patients) between January 2020 and July 2022. A total of six patients (4.4%) had a germline BRCA1 and BRCA2 mutation. Five patients were treated with modified FOLFIRINOX and one with fluorouracil and oxaliplatin. All patients continued platinum-based chemotherapy for ˃4 months and were subsequently treated with olaparib as a maintenance therapy. The response rate to platinum-based chemotherapy in the germline BRCA1 and BRCA2 mutation-positive group was significantly better than that of the germline BRCA1 and BRCA2 mutation-negative group (66% vs 23%, P = 0.04). All patients harbouring a germline BRCA1 and BRCA2 mutation were able to switch to olaparib. The median progression-free survival using olaparib was 5.7 months (range 3.0-9.2). CONCLUSIONS: The rate of germline BRCA1 and BRCA2 mutations found in patients with unresectable pancreatic cancer was comparable to those of previous studies.An analysis of germline BRCA1 and BRCA2 mutations has benefits for all patients with unresectable pancreatic cancer with regard to decisions on therapeutic strategies in a clinical practice setting.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Neoplasias Pancreáticas , Femenino , Humanos , Proteína BRCA1/genética , Antineoplásicos/uso terapéutico , Estudios Prospectivos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteína BRCA2/genética , Neoplasias Ováricas/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Genes BRCA1 , Genes BRCA2 , Mutación , Ftalazinas/uso terapéutico , Ftalazinas/efectos adversos , Mutación de Línea Germinal
3.
Front Oncol ; 13: 1203296, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434969

RESUMEN

Background: Treatment with anti-EGFR antibody has been shown to prolong survival in patients with RAS wild-type metastatic colorectal cancer (mCRC). However, even patients who initially respond to anti-EGFR antibody therapy, almost without exception, develop resistance to the therapy and then fail to respond. Secondary mutations in the mitogen-activated protein (MAPK) signaling pathway (mainly in NRAS and BRAF) have been implicated in anti-EGFR resistance. However, the process by which resistant clones develop during therapy has not been elucidated, and considerable intrapatient and interpatient heterogeneity exists. Circulating tumor DNA (ctDNA) testing has recently allowed the noninvasive detection of heterogeneous molecular alterations that underlie the evolution of resistance to anti-EGFR. In this report, we describe our observation of genomic alterations in KRAS and NRAS in a patient with acquired resistance to anti-EGFR antibody drugs by tracking clonal evolution using serial ctDNA anaylsis. Case presentation: A 54-year-old woman was initially diagnosed with sigmoid colon cancer with multiple liver metastases. After receiving first-line mFOLFOX + cetuximab, second-line FOLFIRI + ramucirumab, third-line trifluridine/tipiracil + bevacizumab, fourth-line regorafenib, and fifth-line CAPOX + bevacizumab, she was rechallenged with CPT-11 + cetuximab. The best response to anti-EGFR rechallenge therapy was a partial response. RAS in the ctDNA was assessed during treatment. The RAS status changed from wild type to mutant type, back to wild type, and again to mutant type (NRAS/KRAS codon 61) during the course of treatment. Conclusion: In this report, tracking of ctDNA allowed us to describe clonal evolution in a case in which we observed genomic alterations in KRAS and NRAS in a patient who acquired resistance to anti-EGFR antibody drugs during treatment. It is reasonable to consider repeat molecular interrogation during progression in patients with mCRC by using ctDNA analysis, which could help to identify patients who may benefit from a rechallenge strategy.

4.
Nat Immunol ; 24(8): 1331-1344, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443284

RESUMEN

CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Diferenciación Celular , Sistema Nervioso Central , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Células TH1 , Células Th17 , Factores de Transcripción , Virulencia , Humanos
5.
Front Immunol ; 14: 1203621, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492584

RESUMEN

Background: Immune checkpoint inhibitors (ICIs) are the standard treatment for metastatic colorectal cancer (mCRC) with high microsatellite instability (MSI-H). Among immune-related adverse events (irAEs), drug-induced sarcoidosis-like reactions (DISR) are often difficult to differentiate from cancer progression. Main Body: This is a case of a woman in her mid-60s, with mCRC (RAS wild/BRAF mutant/MSI-H) and abdominal lymph node metastasis, treated with four courses of ipilimumab + nivolumab every 3 weeks, followed by nivolumab every 2 weeks as third-line treatment. After treatment, the original lymph node metastases shrank, but hilar/mediastinal lymph nodes appeared. Endoscopic ultrasound-guided fine-needle aspiration of these lymph nodes revealed multiple epithelioid granulomas without necrosis, indicating a sarcoidosis-like reaction. Fluorodeoxyglucose-positron emission tomography scan showed abnormal subcutaneous accumulation in bilateral forearms and bilateral knee joints. Biopsy of the cutaneous lesions was also performed, which revealed epithelioid granulomas. As the patient had no symptoms in other organs, no specific therapeutic intervention was administered. After the discontinuation of immunotherapy, the sarcoidosis-like reaction regressed without cancer relapse. Conclusions: Clinicians should be aware of the possibility of DISR as an irAE during the ICI treatment of mCRC. In suspected cases of DISR following ICI therapy, it is important to differentiate between cancer progression and DISR through histological diagnosis for the subsequent strategy, as radiological and serological findings are not definitive.


Asunto(s)
Neoplasias del Colon , Neoplasias del Recto , Sarcoidosis , Humanos , Femenino , Nivolumab/efectos adversos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Recurrencia Local de Neoplasia , Sarcoidosis/inducido químicamente , Sarcoidosis/diagnóstico , Neoplasias del Colon/inducido químicamente , Granuloma/inducido químicamente , Metástasis Linfática
6.
Front Oncol ; 12: 988527, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119486

RESUMEN

Characterization of the genomic landscape of biliary tract cancer (BTC) may lead to applying genotype-matched therapy for patients with this disease. Evidence that comprehensive cancer genomic profiling (CGP) guides genotype-matched therapy to improve clinical outcomes is building. However, the significance of CGP in patients with BTC remains unclarified in clinical practice. Therefore, the purposes of this study were to assess the utility of CGP and identify associations between clinical outcomes and genomic alterations in patients with BTC. In this prospective analysis, detection rates for actionable genomic alterations and access rates for genotype-matched therapy were analyzed in 72 patients with advanced BTC who had undergone commercial CGP. Cox regression analyses assessed relationships between overall survival and genomic alterations detected with CGP. The most common genomic alterations detected were TP53 (41, 56.9%), followed by CDKN2A/B (24, 33.3%/20, 27.8%), and KRAS (20, 27.8%). Actionable genomic alterations were identified in 58.3% (42/72) of patients. Detection rates for FGFR2 fusions, IDH1 mutations, and BRAF V600E were low in this cohort. Eight (11.1%) patients received genotype-matched therapy. For patients with intrahepatic cholangiocarcinoma (ICC), CDKN2A/B loss was associated with shorter overall survival. These real-world data demonstrate that CGP can identify therapeutic options in patients with advanced BTC. CDKN2A/B loss was identified as a poor prognostic factor in patients with ICC. Thus, this study provides a rationale for considering CGP in planning therapeutic strategies for advanced BTC.

7.
J Immunol ; 208(3): 642-650, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34996840

RESUMEN

TNF receptor-associated factor 5 (TRAF5) restrains early signaling activity of the IL-6 receptor in naive CD4+ T cells by interacting with the shared gp130 chain, although TRAF5 was initially discovered as a cytoplasmic adaptor protein to activate signaling mediated by TNF receptor family molecules. This leads to the question of whether TRAF5 limits signaling via the receptor for IL-27, which is composed of gp130 and WSX-1. The aim of this study is to clarify the role of TRAF5 in IL-27 receptor signaling and to understand the differential role of TRAF5 on cytokine receptor signaling. We found that Traf5 -/- CD4+ T cells displayed significantly higher levels of phosphorylated STAT1 and STAT-regulated genes Socs3 and Tbx21, as early as 1 h after IL-27 exposure when compared with Traf5 +/+ CD4+ T cells. Upon IL-27 and TCR signals, the Traf5 deficiency significantly increased the induction of IL-10 and promoted the proliferation of CD4+ T cells. Traf5 -/- mice injected with IL-27 displayed significantly enhanced delayed-type hypersensitivity responses, demonstrating that TRAF5 works as a negative regulator for IL-27 receptor signaling. In contrast, IL-2 and proliferation mediated by glucocorticoid-induced TNF receptor-related protein (GITR) and TCR signals were significantly decreased in Traf5 -/- CD4+ T cells, confirming that TRAF5 works as a positive regulator for cosignaling via GITR. Collectively, our results demonstrate that TRAF5 reciprocally controls signals mediated by the IL-27 receptor and GITR in CD4+ T cells and suggest that the regulatory activity of TRAF5 in gp130 is distinct from that in TNF receptor family molecules in a T cell.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Receptor gp130 de Citocinas/metabolismo , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Interleucina/metabolismo , Factor 5 Asociado a Receptor de TNF/metabolismo , Animales , Proliferación Celular , Hipersensibilidad Tardía/inmunología , Interleucina-10/inmunología , Interleucinas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/inmunología , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteínas de Dominio T Box/metabolismo , Factor 5 Asociado a Receptor de TNF/genética
8.
Dig Dis Sci ; 67(4): 1252-1259, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33818662

RESUMEN

BACKGROUND: The Toll-like receptor signaling pathway contributes to the regulation of intestinal homeostasis through interactions with commensal bacteria. Although the transcriptional regulator IκB-ζ can be induced by Toll-like receptor signaling, its role in intestinal homeostasis is still unclear. AIMS: To investigate the role of IκB-ζ in gut homeostasis. METHODS: DSS-administration induced colitis in control and IκB-ζ-deficient mice. The level of immunoglobulins in feces was detected by ELISA. The immunological population in lamina propria (LP) was analyzed by FACS. RESULTS: IκB-ζ-deficient mice showed severe inflammatory diseases with DSS administration in the gut. The level of IgM in the feces after DSS administration was less in IκB-ζ-deficient mice compared to control mice. Upon administration of DSS, IκB-ζ-deficient mice showed exaggerated intestinal inflammation (more IFN-g-producing CD4+ T cells in LP), and antibiotic treatment canceled this inflammatory phenotype. CONCLUSION: IκB-ζ plays a crucial role in maintaining homeostasis in the gut.


Asunto(s)
Colitis , Animales , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Homeostasis , Humanos , Interferón gamma , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
9.
Immunity ; 54(3): 514-525.e6, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33657395

RESUMEN

MicroRNAs are important regulators of immune responses. Here, we show miR-221 and miR-222 modulate the intestinal Th17 cell response. Expression of miR-221 and miR-222 was induced by proinflammatory cytokines and repressed by the cytokine TGF-ß. Molecular targets of miR-221 and miR-222 included Maf and Il23r, and loss of miR-221 and miR-222 expression shifted the transcriptomic spectrum of intestinal Th17 cells to a proinflammatory signature. Although the loss of miR-221 and miR-222 was tolerated for maintaining intestinal Th17 cell homeostasis in healthy mice, Th17 cells lacking miR-221 and miR-222 expanded more efficiently in response to IL-23. Both global and T cell-specific deletion of miR-221 and miR-222 rendered mice prone to mucosal barrier damage. Collectively, these findings demonstrate that miR-221 and miR-222 are an integral part of intestinal Th17 cell response that are induced after IL-23 stimulation to constrain the magnitude of proinflammatory response.


Asunto(s)
Inflamación/inmunología , Interleucina-23/metabolismo , Mucosa Intestinal/inmunología , MicroARNs/genética , Células Th17/inmunología , Animales , Retroalimentación Fisiológica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-maf/metabolismo , Receptores de Interleucina/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
10.
World J Gastroenterol ; 26(45): 7118-7130, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33362372

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) colonizes the human stomach and is a major cause of peptic ulcer disease and gastric cancer. However, although the prevalence of H. pylori is high in Africa, the incidence of gastric cancer is low, and this phenomenon is called to be African enigma. The CagA protein produced by H. pylori is the most studied virulence factor. The carcinogenic potential of CagA is associated with the Glu-Pro-Ile-Tyr-Ala (EPIYA) patterns and CagA-multimerization (CM) motifs. AIM: To better understand the EPIYA patterns and CM motifs of the cagA gene. METHODS: Gastric mucosal biopsy specimens were obtained from 258 patients with dyspepsia living in the Dominican Republic, from which 120 H. pylori strains were cultured. After the bacterial DNA extraction, the EPIYA pattern and CM motif genotypes were determined using a polymerase chain reaction-based sequencing. The population structure of the Dominican Republic strains was analyzed using multilocus sequence typing (MLST). Peptic ulcer disease and gastric cancer were identified via endoscopy, and gastric cancer was confirmed by histopathology. Histological scores of the gastric mucosa were evaluated using the updated Sydney system. RESULTS: All CagA-positive strains carried the Western-type CagA according to the identified EPIYA patterns. Twenty-seven kinds of CM motifs were observed. Although the typical Western CM motif (FPLKRHDKVDDLSKVG) was observed most frequently, the typical East Asian CM motif (FPLRRSAAVNDLSKVG) was not observed. However, "FPLRRSAKVEDLSKVG", similar to the typical East Asian CM motif, was found in 21 strains. Since this type was significantly more frequent in strains classified as hpAfrica1 using MLST analysis (P = 0.034), we termed it Africa1-CM (Af1-CM). A few hpEurope strains carried the Af1-CM motif, but they had a significantly higher ancestral Africa1 component than that of those without the Af1-CM motif (P = 0.030). In 30 cagA-positive strains, the "GKDKGPE" motif was observed immediately upstream of the EPIYA motif in the EPIYA-A segment, and there was a significant association between strains with the hpAfrica1 population and those containing the "GKDKGPE" motif (P = 0.018). In contrast, there was no significant association between the CM motif patterns and histological scores and clinical outcomes. CONCLUSION: We found the unique African CM motif in Western-type CagA and termed it Africa1-CM. The less toxicity of this motif could be one reason to explain the African enigma.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , África , Secuencias de Aminoácidos , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , República Dominicana/epidemiología , Infecciones por Helicobacter/epidemiología , Helicobacter pylori/genética , Humanos , Tipificación de Secuencias Multilocus
11.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33010223

RESUMEN

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Elementos de Facilitación Genéticos/inmunología , Células Asesinas Naturales/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Animales , Cromatina/genética , Cromatina/inmunología , Femenino , Expresión Génica/genética , Expresión Génica/inmunología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Toxoplasma/inmunología , Toxoplasmosis/genética , Toxoplasmosis/inmunología
13.
Immunohorizons ; 4(3): 129-139, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32156688

RESUMEN

TNFR-associated factor 5 (TRAF5) is a cytosolic adaptor protein and functions as an inflammatory regulator. However, the in vivo function of TRAF5 remains unclear, and how TRAF5 controls inflammatory responses in the intestine is not well understood. In this study, we found that intestinal epithelial cells from Traf5-/- mice expressed a significantly lower level of NF-κB-regulated proinflammatory genes, such as Tnf, Il6, and Cxcl1, as early as day 3 after dextran sulfate sodium (DSS) exposure when compared with wild-type mice. The intestinal barrier integrity of DSS-treated Traf5-/- mice remained intact at this early time point, and Traf5-/- mice showed decreased body weight loss and longer colon length at later time points. Surprisingly, the protein level of TRAF2, but not TRAF3, was reduced in colon tissues of Traf5-/- mice after DSS, indicating the requirement of TRAF5 for TRAF2 protein stability in the inflamed colon. Experiments with bone marrow chimeras confirmed that TRAF5 deficiency in nonhematopoietic cells caused the attenuated colitis. Our in vitro experiments demonstrated that proinflammatory cytokines significantly promoted the degradation of TRAF2 protein in Traf5-/- nonhematopoietic cells in a proteasome-dependent manner. Collectively, our data suggest a novel regulatory function of TRAF5 in supporting the proinflammatory function of TRAF2 in nonhematopoietic cells, which may be important for acute inflammatory responses in the intestine.


Asunto(s)
Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran/farmacología , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 5 Asociado a Receptor de TNF/metabolismo , Animales , Células Cultivadas , Colon/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 5 Asociado a Receptor de TNF/genética , Transfección
14.
FASEB J ; 34(1): 540-554, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914585

RESUMEN

A costimulatory signal from the tumor necrosis factor receptor (TNFR) family molecule OX40 (CD134), which is induced on activated T cells, is important for T-cell immunity. Aberrant OX40 cosignaling has been implicated in autoimmune and inflammatory disorders. However, the molecular mechanism by which the OX40 cosignaling regulates the T-cell response remains obscure. We found that OX40 associated with a scaffold protein, IQ motif-containing GTPase-activating protein 1 (IQGAP1) after ligation by its ligand OX40L. Naïve CD4+ T cells from Iqgap1-/- mice displayed enhanced proliferation and cytokine secretion upon receiving OX40 cosignaling. A C-terminal IQGAP1 region was responsible for its association with OX40, and TNFR-associated factor 2 (TRAF2) bridged these two proteins. The enhanced cytokine response in Iqgap1-/- T cells was restored by the expression of the C-terminal IQGAP1. Thus, the IQGAP1 binding limits the OX40 cosignaling. Disease severity of experimental autoimmune encephalomyelitis (EAE) was significantly exacerbated in Iqgap1-/- mice as compared to wild-type mice. Additionally, recipient mice with Iqgap1-/- donor CD4+ T cells exhibited significantly higher EAE scores than those with their wild-type counterparts, and OX40 blockade led to a significant reduction in the EAE severity. Thus, our study defines an important component of the OX40 cosignaling that restricts inflammation driven by antigen-activated T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Memoria Inmunológica/inmunología , Inflamación/inmunología , Activación de Linfocitos/inmunología , Receptores OX40/metabolismo , Proteínas Activadoras de ras GTPasa/fisiología , Animales , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores OX40/genética , Transducción de Señal
15.
BMC Evol Biol ; 19(1): 197, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675915

RESUMEN

BACKGROUND: Helicobacter pylori, a bacterium that infects the human stomach, has high genetic diversity. Because its evolution is parallel to human, H. pylori is used as a tool to trace human migration. However, there are few studies about the relationship between phylogeography of H. pylori and its host human. METHODS: We examined both H. pylori DNA and the host mitochondrial DNA and Y-chromosome DNA obtained from a total 119 patients in the Dominican Republic, where human demography consists of various ancestries. DNA extracted from cultured H. pylori were analyzed by multi locus sequence typing. Mitochondrial DNA and Y-chromosome DNA were evaluated by haplogroup analyses. RESULTS: H. pylori strains were divided into 2 populations; 68 strains with African group (hpAfrica1) and 51 strains with European group (hpEurope). In Y-chromosomal haplogroup, European origin was dominant, whereas African origin was dominant both in H. pylori and in mtDNA haplogroup. These results supported the hypothesis that mother-to-child infection is predominant in H. pylori infection. The Amerindian type of mtDNA haplogroup was observed in 11.8% of the patients; however, Amerindian type (hspAmerind) of H. pylori was not observed. Although subpopulation type of most hpAfrica1 strains in Central America and South America were hybrid (hspWAfrica/hpEurope), most Dominican Republic hpAfrica1 strains were similar to those of African continent. CONCLUSIONS: Genetic features of H. pylori, mtDNA, and Y haplogroups reflect the history of colonial migration and slave trade in the Dominican Republic. Discrepancy between H. pylori and the host human genotypes support the hypothesis that adaptability of hspAmerind H. pylori strains are weaker than hpEurope strains. H. pylori strains in the Dominican Republic seem to contain larger proportion of African ancestry compared to other American continent strains.


Asunto(s)
Helicobacter pylori/genética , Migración Humana , Adulto , Anciano , Cromosomas Humanos Y , ADN Mitocondrial/genética , República Dominicana , Femenino , Genotipo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/clasificación , Genética Humana , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Persona de Mediana Edad , Tipificación de Secuencias Multilocus , Filogeografía , Adulto Joven
16.
Immunity ; 51(4): 682-695.e6, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31353223

RESUMEN

Innate lymphocytes maintain tissue homeostasis at mucosal barriers, with group 2 innate lymphoid cells (ILC2s) producing type 2 cytokines and controlling helminth infection. While the molecular understanding of ILC2 responses has advanced, the complexity of microenvironmental factors impacting ILC2s is becoming increasingly apparent. Herein, we used single-cell analysis to explore the diversity of gene expression among lung lymphocytes during helminth infection. Following infection, we identified a subset of ILC2s that preferentially expressed Il5-encoding interleukin (IL)-5, together with Calca-encoding calcitonin gene-related peptide (CGRP) and its cognate receptor components. CGRP in concert with IL-33 and neuromedin U (NMU) supported IL-5 but constrained IL-13 expression and ILC2 proliferation. Without CGRP signaling, ILC2 responses and worm expulsion were enhanced. Collectively, these data point to CGRP as a context-dependent negative regulatory factor that shapes innate lymphocyte responses to alarmins and neuropeptides during type 2 innate immune responses.


Asunto(s)
Inflamación/inmunología , Linfocitos/inmunología , Nippostrongylus/fisiología , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Infecciones por Strongylida/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Inmunidad Innata , Interleucina-33/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Análisis de la Célula Individual , Células Th2/inmunología , Quimera por Trasplante
17.
Curr Top Microbiol Immunol ; 421: 139-158, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31123888

RESUMEN

Infectious diseases have been paramount among the threats to human health and survival throughout evolutionary history. Bacterial cell-surface molecules are key factors in the microorganism-host crosstalk, as they can interact with host pattern-recognition receptors (PRRs) of the gastrointestinal mucosa. The best-studied PRRs are toll-like receptors (TLRs). Because TLRs play an important key role in host defense, they have received increasing interest in the evolutionary and population genetics literature, and their variation represents a potential target of adaptive evolution. Helicobacter pylori is one of the commensal bacteria in our body and can have pathogenic properties in a subset of infected people. The history of H. pylori research indicated that humans and bacteria co-evolved during evolution. A genome-wide association study (GWAS) has opened the way for investigating the genomic evolution of bacterial pathogens during the colonization and infection of humans. Recent GWAS research emphasized the importance of TLRs, especially TLR10 during pathogenesis in H. pylori infection. We demonstrated that TLR10, whose ligand was unknown for a long time, can recognize H. pylori LPS. Our results of H. pylori research suggest that TLR10 might play an important role to also recognize other commensal bacteria. In this review, we discuss the importance of TLRs in pro-inflammatory and anti-inflammatory responses by H. pylori infection. Especially, we highlight the TLR10 interaction with H. pylori infection, providing new insights about TLR10 signaling.


Asunto(s)
Antiinflamatorios/inmunología , Infecciones por Helicobacter/inmunología , Helicobacter pylori/inmunología , Helicobacter pylori/patogenicidad , Mediadores de Inflamación/inmunología , Receptores Toll-Like/inmunología , Evolución Molecular , Estudio de Asociación del Genoma Completo , Infecciones por Helicobacter/genética , Humanos , Receptores Toll-Like/genética
18.
Helicobacter ; 24(3): e12583, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30950121

RESUMEN

BACKGROUND: Lack of a model that mirrors Helicobacter pylori-induced gastric mucosal inflammation has hampered investigation of early host-bacterial interactions. We used an ex vivo model of human stomach, gastric epithelial organoid monolayers (gastroid monolayers) to investigate interactions of H pylori infection and the apical junctional complex and interleukin-8 (IL-8) expression. METHOD: Morphology of human antral mucosal gastroid monolayers was evaluated using histology, immunohistochemical (IHC) staining, and transmission electron microscopy (TEM). Functional and gross changes in the apical junctional complexes were assessed using transepithelial electrical resistance (TEER), cytotoxicity assays, and confocal laser scanning microscopy. IL-8 expression was evaluated by real-time quantitative PCR and ELISA. RESULTS: When evaluated by IHC and TEM, the morphology of gastroid monolayers closely resembled in vivo human stomach. Following inoculation of H pylori, TEER transiently declined (up to 51%) in an H pylori density-dependent manner. TEER recovered by 48 hours post-infection and remained normal despite continued presence and replication of H pylori. Confocal scanning microscopy showed minimal disruption of zonula occludens-1 or E-cadherin structure. IL-8 production was unchanged by infection with either CagA-positive or CagA-negative H pylori and JNK and MEK inhibitors did not suppress IL-8 production, whereas p38 and IKK inhibitor significantly did. CONCLUSION: Human gastroid monolayers provide a model for experimental H pylori infection more consistent with in vivo human infections than seen with typical gastric epithelial cell lines. This ex vivo system should lead to better understanding of H pylori host-pathogen interactions.


Asunto(s)
Gastritis/patología , Infecciones por Helicobacter/patología , Helicobacter pylori/fisiología , Interacciones Huésped-Patógeno , Interleucina-8/metabolismo , Línea Celular Tumoral , Células Cultivadas , Células Epiteliales/microbiología , Células Epiteliales/patología , Gastritis/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Humanos , Inflamación/microbiología , Mutación , Estómago/microbiología , Estómago/patología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
19.
Front Immunol ; 9: 1986, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214449

RESUMEN

There is growing evidence that tumor necrosis factor (TNF) receptor-associated factors (TRAFs) bind to unconventional membrane-bound receptors in many cell types and control their key signaling activity, in both positive and negative ways. TRAFs function in a variety of biological processes in health and disease, and dysregulation of TRAF expression or activity often leads to a patho-physiological outcome. We have identified a novel attribute of TRAF2 and TRAF5 in interleukin-6 (IL-6) receptor signaling in CD4+ T cells. TRAF2 and TRAF5 are highly expressed by naïve CD4+ T cells and constitutively bind to the signal-transducing receptor common chain gp130 via the C-terminal TRAF domain. The binding between TRAF and gp130 limits the early signaling activity of the IL-6 receptor complex by preventing proximal interaction of Janus kinases (JAKs) associated with gp130. In this reason, TRAF2 and TRAF5 in naïve CD4+ T cells negatively regulate IL-6-mediated activation of signal transducer and activator of transcription 3 (STAT3) that is required for the development of IL-17-secreting CD4+ TH17 cells. Indeed, Traf2-knockdown in differentiating Traf5-/- CD4+ T cells strongly promotes TH17 development. Traf5-/- donor CD4+ T cells exacerbate the development of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in wild-type recipient mice. In this review, we summarize the current understanding of the role for TRAF2 and TRAF5 in the regulation of IL-6-driven differentiation of pro-inflammatory CD4+ T cells, especially focusing on the molecular mechanism by which TRAF2 and TRAF5 inhibit the JAK-STAT pathway that is initiated in the IL-6 receptor signaling complex.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Encefalomielitis Autoinmune Experimental/inmunología , Inflamación/inmunología , Receptores de Interleucina-6/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 5 Asociado a Receptor de TNF/metabolismo , Células Th17/fisiología , Animales , Diferenciación Celular , Receptor gp130 de Citocinas/metabolismo , Humanos , Quinasas Janus/metabolismo , Ratones , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factor 2 Asociado a Receptor de TNF/genética , Factor 5 Asociado a Receptor de TNF/genética
20.
Int Immunol ; 30(7): 291-299, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29668931

RESUMEN

Tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF5 constitutively bind to glycoprotein 130 kDa (gp130) and inhibit IL-6-driven activation of signal transducer and activator of transcription 3 (STAT3) in CD4+ T cells, which limits the differentiation of pro-inflammatory IL-17-producing helper T cells that require IL-6-receptor (IL-6R) signals for their development. However, it is not known how the interaction between TRAF and gp130 negatively regulates STAT3 activity in the IL-6R complex. We hypothesized that TRAF proteins associated with gp130 might limit the activation of Janus kinase that is needed for the activation of STAT3. To test this, we transfected HEK293T cells to express gp130 and TRAF2 or TRAF5 together with two chimeric JAK1 proteins combined with either the N-terminal or the C-terminal protein fragment of firefly luciferase. Using this luciferase fragment complementation system, we found that the recovery of luciferase enzyme activity was coincident with proximal JAK1-JAK1 interaction and phosphorylation of JAK1 in the IL-6R complex and that the expression of TRAF protein significantly inhibited the recovery of luciferase activity. The binding of TRAF to gp130 via the C-terminal TRAF domain was essential for the inhibition. In accordance with this, upon stimulation of endogenous gp130 with a complex of IL-6 and IL-6R, Traf5-/- CD4+ T cells displayed significantly higher amounts of phosphorylated JAK1 than did their wild-type counterparts. Therefore, our results demonstrate that gp130-associated TRAF2 and TRAF5 inhibit the interaction between two JAK proteins in the IL-6R complex that is essential for initiating the JAK-STAT signaling pathway.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Interleucina-6/metabolismo , Janus Quinasa 1/metabolismo , Transducción de Señal , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 5 Asociado a Receptor de TNF/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Receptor gp130 de Citocinas/inmunología , Interleucina-6/inmunología , Janus Quinasa 1/inmunología , Ratones , Fosforilación , Unión Proteica , Factor 2 Asociado a Receptor de TNF/inmunología , Factor 5 Asociado a Receptor de TNF/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA