Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Neuron ; 112(1): 93-112.e10, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38096817

RESUMEN

Astrocytes play crucial roles in regulating neural circuit function by forming a dense network of synapse-associated membrane specializations, but signaling pathways regulating astrocyte morphogenesis remain poorly defined. Here, we show the Drosophila lipid-binding G protein-coupled receptor (GPCR) Tre1 is required for astrocytes to establish their intricate morphology in vivo. The lipid phosphate phosphatases Wunen/Wunen2 also regulate astrocyte morphology and, via Tre1, mediate astrocyte-astrocyte competition for growth-promoting lipids. Loss of s1pr1, the functional analog of Tre1 in zebrafish, disrupts astrocyte process elaboration, and live imaging and pharmacology demonstrate that S1pr1 balances proper astrocyte process extension/retraction dynamics during growth. Loss of Tre1 in flies or S1pr1 in zebrafish results in defects in simple assays of motor behavior. Tre1 and S1pr1 are thus potent evolutionarily conserved regulators of the elaboration of astrocyte morphological complexity and, ultimately, astrocyte control of behavior.


Asunto(s)
Proteínas de Drosophila , Pez Cebra , Animales , Astrocitos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
3.
Cell Rep ; 42(6): 112573, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267107

RESUMEN

Balance and movement are impaired in many neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics but without the throughput and scalability necessary to screen candidate genes/potential therapeutics. Here, we present a scalable apparatus to measure posture and locomotion (SAMPL). SAMPL includes extensible hardware and open-source software with real-time processing and can acquire data from D. melanogaster, C. elegans, and D. rerio as they move vertically. Using SAMPL, we define how zebrafish balance as they navigate vertically and discover small but systematic variations among kinematic parameters between genetic backgrounds. We demonstrate SAMPL's ability to resolve differences in posture and navigation as a function of effect size and data gathered, providing key data for screens. SAMPL is therefore both a tool to model balance and locomotor disorders and an exemplar of how to scale apparatus to support screens.


Asunto(s)
Caenorhabditis elegans , Drosophila melanogaster , Animales , Pez Cebra , Conducta Animal , Locomoción , Postura
4.
Curr Biol ; 33(4): 780-789.e4, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36731464

RESUMEN

Insects use their antennae to smell odors,1,2 detect auditory cues,3,4 and sense mechanosensory stimuli such as wind5 and objects,6,7,8 frequently by combining sensory processing with active movements. Genetic access to antennal motor systems would therefore provide a powerful tool for dissecting the circuit mechanisms underlying active sensing, but little is known about how the most genetically tractable insect, Drosophila melanogaster, moves its antennae. Here, we use deep learning to measure how tethered Drosophila move their antennae in the presence of sensory stimuli and identify genetic reagents for controlling antennal movement. We find that flies perform both slow adaptive movements and fast flicking movements in response to wind-induced deflections, but not the attractive odor apple cider vinegar. Next, we describe four muscles in the first antennal segment that control antennal movements and identify genetic driver lines that provide access to two groups of antennal motor neurons and an antennal muscle. Through optogenetic inactivation, we provide evidence that antennal motor neurons contribute to active movements with different time courses. Finally, we show that activation of antennal motor neurons and muscles can adjust the gain and acuity of wind direction encoding by antennal displacement. Together, our experiments provide insight into the neural control of antennal movement and suggest that active antennal positioning in Drosophila may tune the precision of wind encoding.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila melanogaster/genética , Viento , Antenas de Artrópodos/fisiología , Sensación
5.
Artículo en Inglés | MEDLINE | ID: mdl-36658447

RESUMEN

Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.


Asunto(s)
Artrópodos , Animales , Vías Olfatorias/fisiología , Olfato/fisiología , Odorantes , Encéfalo/fisiología
6.
bioRxiv ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36712122

RESUMEN

Balance and movement are impaired in a wide variety of neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics, but without the throughput and scalability necessary to screen candidate genes / potential therapeutics. We present a powerful solution: a Scalable Apparatus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imaging hardware and low-cost open-source acquisition software with real-time processing. We first demonstrate that SAMPL's hardware and acquisition software can acquire data from from D. melanogaster, C. elegans, and D. rerio as they move vertically. Next, we leverage SAMPL's throughput to rapidly (two weeks) gather a new zebrafish dataset. We use SAMPL's analysis and visualization tools to replicate and extend our current understanding of how zebrafish balance as they navigate through a vertical environment. Next, we discover (1) that key kinematic parameters vary systematically with genetic background, and (2) that such background variation is small relative to the changes that accompany early development. Finally, we simulate SAMPL's ability to resolve differences in posture or vertical navigation as a function of affect size and data gathered -- key data for screens. Taken together, our apparatus, data, and analysis provide a powerful solution for labs using small animals to investigate balance and locomotor disorders at scale. More broadly, SAMPL is both an adaptable resource for labs looking process videographic measures of behavior in real-time, and an exemplar of how to scale hardware to enable the throughput necessary for screening.

7.
Nat Commun ; 13(1): 4613, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941114

RESUMEN

To navigate towards a food source, animals frequently combine odor cues about source identity with wind direction cues about source location. Where and how these two cues are integrated to support navigation is unclear. Here we describe a pathway to the Drosophila fan-shaped body that encodes attractive odor and promotes upwind navigation. We show that neurons throughout this pathway encode odor, but not wind direction. Using connectomics, we identify fan-shaped body local neurons called h∆C that receive input from this odor pathway and a previously described wind pathway. We show that h∆C neurons exhibit odor-gated, wind direction-tuned activity, that sparse activation of h∆C neurons promotes navigation in a reproducible direction, and that h∆C activity is required for persistent upwind orientation during odor. Based on connectome data, we develop a computational model showing how h∆C activity can promote navigation towards a goal such as an upwind odor source. Our results suggest that odor and wind cues are processed by separate pathways and integrated within the fan-shaped body to support goal-directed navigation.


Asunto(s)
Odorantes , Olfato , Animales , Señales (Psicología) , Drosophila , Olfato/fisiología , Viento
8.
Elife ; 92020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33377868

RESUMEN

The insect central complex (CX) is thought to underlie goal-oriented navigation but its functional organization is not fully understood. We recorded from genetically-identified CX cell types in Drosophila and presented directional visual, olfactory, and airflow cues known to elicit orienting behavior. We found that a group of neurons targeting the ventral fan-shaped body (ventral P-FNs) are robustly tuned for airflow direction. Ventral P-FNs did not generate a 'map' of airflow direction. Instead, cells in each hemisphere were tuned to 45° ipsilateral, forming a pair of orthogonal bases. Imaging experiments suggest that ventral P-FNs inherit their airflow tuning from neurons that provide input from the lateral accessory lobe (LAL) to the noduli (NO). Silencing ventral P-FNs prevented flies from selecting appropriate corrective turns following changes in airflow direction. Our results identify a group of CX neurons that robustly encode airflow direction and are required for proper orientation to this stimulus.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Neuronas/citología , Neuronas/fisiología , Orientación Espacial/fisiología , Navegación Espacial/fisiología , Animales , Encéfalo/citología , Encéfalo/fisiología
9.
Neuron ; 106(1): 9-11, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32272068

RESUMEN

How are head direction signals computed and maintained in neural circuits? In this issue of Neuron, Shiozaki et al. (2020) expand our understanding of the fly "compass" network, revealing context- and experience-dependent changes in the multiplexed encoding of head direction and steering maneuvers.


Asunto(s)
Drosophila , Neuronas , Animales , Cabeza , Invertebrados
10.
Curr Opin Neurobiol ; 64: 10-16, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31841944

RESUMEN

Spatial navigation is influenced by cues from nearly every sensory modality and thus provides an excellent model for understanding how different sensory streams are integrated to drive behavior. Here we review recent work on multisensory control of navigation in the model organism Drosophila melanogaster, which allows for detailed circuit dissection. We identify four modes of integration that have been described in the literature-suppression, gating, summation, and association-and describe regions of the larval and adult brain that have been implicated in sensory integration. Finally we discuss what circuit architectures might support these different forms of integration. We argue that Drosophila is an excellent model to discover these circuit and biophysical motifs.


Asunto(s)
Drosophila melanogaster , Navegación Espacial , Animales , Encéfalo , Señales (Psicología) , Drosophila
11.
Neuron ; 102(4): 828-842.e7, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30948249

RESUMEN

Wind is a major navigational cue for insects, but how wind direction is decoded by central neurons in the insect brain is unknown. Here we find that walking flies combine signals from both antennae to orient to wind during olfactory search behavior. Movements of single antennae are ambiguous with respect to wind direction, but the difference between left and right antennal displacements yields a linear code for wind direction in azimuth. Second-order mechanosensory neurons share the ambiguous responses of a single antenna and receive input primarily from the ipsilateral antenna. Finally, we identify novel "wedge projection neurons" that integrate signals across the two antennae and receive input from at least three classes of second-order neurons to produce a more linear representation of wind direction. This study establishes how a feature of the sensory environment-wind direction-is decoded by neurons that compare information across two sensors.


Asunto(s)
Encéfalo/fisiología , Sensilos/fisiología , Viento , Animales , Conducta Apetitiva , Antenas de Artrópodos/fisiología , Drosophila melanogaster , Mecanorreceptores/fisiología , Técnicas de Placa-Clamp , Células Receptoras Sensoriales/fisiología , Olfato
12.
J Neurosci ; 39(19): 3713-3727, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30846614

RESUMEN

The demands on a sensory system depend not only on the statistics of its inputs but also on the task. In olfactory navigation, for example, the task is to find the plume source; allocation of sensory resources may therefore be driven by aspects of the plume that are informative about source location, rather than concentration per se. Here we explore the implications of this idea for encoding odor concentration. To formalize the notion that sensory resources are limited, we considered coding strategies that partitioned the odor concentration range into a set of discriminable intervals. We developed a dynamic programming algorithm that, given the distribution of odor concentrations at several locations, determines the partitioning that conveys the most information about location. We applied this analysis to planar laser-induced fluorescence measurements of spatiotemporal odor fields with realistic advection speeds (5-20 cm/s), with or without a nearby boundary or obstacle. Across all environments, the optimal coding strategy allocated more resources (i.e., more and finer discriminable intervals) to the upper end of the concentration range than would be expected from histogram equalization, the optimal strategy if the goal were to reconstruct the plume, rather than to navigate. Finally, we show that ligand binding, as captured by the Hill equation, transforms odorant concentration into response levels in a way that approximates information maximization for navigation. This behavior occurs when the Hill dissociation constant is near the mean odor concentration, an adaptive set-point that has been observed in the olfactory system of flies.SIGNIFICANCE STATEMENT The first step of olfactory processing is receptor binding, and the resulting relationship between odorant concentration and the bound receptor fraction is a saturating one. While this Hill nonlinearity can be viewed as a distortion that is imposed by the biophysics of receptor binding, here we show that it also plays an important information-processing role in olfactory navigation. Specifically, by combining a novel dynamic-programming algorithm with physical measurements of turbulent plumes, we determine the optimal strategy for encoding odor concentration when the goal is to determine location. This strategy is distinct from histogram equalization, the strategy that maximizes information about plume concentration, and is closely approximated by the Hill nonlinearity when the binding constant is near the ambient mean.


Asunto(s)
Algoritmos , Dinámicas no Lineales , Odorantes , Olfato/fisiología , Navegación Espacial/fisiología , Acetona/administración & dosificación , Animales , Olfato/efectos de los fármacos , Navegación Espacial/efectos de los fármacos
13.
Curr Biol ; 28(22): 3533-3546.e6, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30393038

RESUMEN

A longstanding goal of systems neuroscience is to quantitatively describe how the brain integrates sensory cues over time. Here, we develop a closed-loop orienting paradigm in Drosophila to study the algorithms by which cues from two modalities are integrated during ongoing behavior. We find that flies exhibit two behaviors when presented simultaneously with an attractive visual stripe and aversive wind cue. First, flies perform a turn sequence where they initially turn away from the wind but later turn back toward the stripe, suggesting dynamic sensory processing. Second, turns toward the stripe are slowed by the presence of competing wind, suggesting summation of turning drives. We develop a model in which signals from each modality are filtered in space and time to generate turn commands and then summed to produce ongoing orienting behavior. This computational framework correctly predicts behavioral dynamics for a range of stimulus intensities and spatial arrangements.


Asunto(s)
Orientación Espacial/fisiología , Orientación/fisiología , Sensación/fisiología , Animales , Encéfalo , Señales (Psicología) , Drosophila melanogaster/fisiología , Retroalimentación Sensorial/fisiología , Vuelo Animal/fisiología , Estimulación Luminosa , Percepción Visual/fisiología , Viento
14.
J Neurosci ; 38(44): 9383-9389, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381430

RESUMEN

Localizing the sources of stimuli is essential. Most organisms cannot eat, mate, or escape without knowing where the relevant stimuli originate. For many, if not most, animals, olfaction plays an essential role in search. While microorganismal chemotaxis is relatively well understood, in larger animals the algorithms and mechanisms of olfactory search remain mysterious. In this symposium, we will present recent advances in our understanding of olfactory search in flies and rodents. Despite their different sizes and behaviors, both species must solve similar problems, including meeting the challenges of turbulent airflow, sampling the environment to optimize olfactory information, and incorporating odor information into broader navigational systems.


Asunto(s)
Algoritmos , Ambiente , Odorantes , Olfato/fisiología , Animales , Humanos , Memoria/fisiología , Especificidad de la Especie
15.
Elife ; 72018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30129438

RESUMEN

Odor attraction in walking Drosophila melanogaster is commonly used to relate neural function to behavior, but the algorithms underlying attraction are unclear. Here, we develop a high-throughput assay to measure olfactory behavior in response to well-controlled sensory stimuli. We show that odor evokes two behaviors: an upwind run during odor (ON response), and a local search at odor offset (OFF response). Wind orientation requires antennal mechanoreceptors, but search is driven solely by odor. Using dynamic odor stimuli, we measure the dependence of these two behaviors on odor intensity and history. Based on these data, we develop a navigation model that recapitulates the behavior of flies in our apparatus, and generates realistic trajectories when run in a turbulent boundary layer plume. The ability to parse olfactory navigation into quantifiable elementary sensori-motor transformations provides a foundation for dissecting neural circuits that govern olfactory behavior.


Asunto(s)
Drosophila melanogaster/fisiología , Actividad Motora/fisiología , Orientación/fisiología , Sensación/fisiología , Olfato/fisiología , Animales , Conducta Animal , Ambiente , Modelos Biológicos , Odorantes , Caminata/fisiología
16.
PLoS Comput Biol ; 14(7): e1006275, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29990365

RESUMEN

Many species rely on olfaction to navigate towards food sources or mates. Olfactory navigation is a challenging task since odor environments are typically turbulent. While time-averaged odor concentration varies smoothly with the distance to the source, instaneous concentrations are intermittent and obtaining stable averages takes longer than the typical intervals between animals' navigation decisions. How to effectively sample from the odor distribution to determine sampling location is the focus in this article. To investigate which sampling strategies are most informative about the location of an odor source, we recorded three naturalistic stimuli with planar lased-induced fluorescence and used an information-theoretic approach to quantify the information that different sampling strategies provide about sampling location. Specifically, we compared multiple sampling strategies based on a fixed number of coding bits for encoding the olfactory stimulus. When the coding bits were all allocated to representing odor concentration at a single sensor, information rapidly saturated. Using the same number of coding bits in two sensors provides more information, as does coding multiple samples at different times. When accumulating multiple samples at a fixed location, the temporal sequence does not yield a large amount of information and can be averaged with minimal loss. Furthermore, we show that histogram-equalization is not the most efficient way to use coding bits when using the olfactory sample to determine location.


Asunto(s)
Conducta Animal/fisiología , Señales (Psicología) , Teoría de la Información , Odorantes , Olfato/fisiología , Navegación Espacial/fisiología , Algoritmos , Animales , Fluorescencia , Neuronas Receptoras Olfatorias/fisiología
17.
Cell Rep ; 23(5): 1259-1274, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29719243

RESUMEN

High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and "nanoscopic molecular fingerprints" might identify synapses with specific temporal features.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de la Membrana/metabolismo , Cuerpos Pedunculados , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas , Animales , Drosophila melanogaster , Cuerpos Pedunculados/metabolismo , Cuerpos Pedunculados/ultraestructura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura
18.
J Neurosci ; 36(15): 4325-38, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27076428

RESUMEN

Local inhibitory neurons control the timing of neural activity in many circuits. To understand how inhibition controls timing, it is important to understand the dynamics of activity in populations of local inhibitory interneurons, as well as the mechanisms that underlie these dynamics. Here we describe the in vivo response dynamics of a large population of inhibitory local neurons (LNs) in the Drosophila melanogaster antennal lobe, the analog of the vertebrate olfactory bulb, and we dissect the network and intrinsic mechanisms that give rise to these dynamics. Some LNs respond to odor onsets ("ON" cells) and others to offsets ("OFF" cells), whereas still others respond at both times. Moreover, different LNs signal odor concentration fluctuations on different timescales. Some respond rapidly, and can track rapid concentration fluctuations. Others respond slowly, and are best at tracking slow fluctuations. We found a continuous spectrum of preferred stimulation timescales among LNs, as well as a continuum of ON-OFF behavior. Using in vivo whole-cell recordings, we show that the timing of an LN's response (ON vs OFF) can be predicted from the interplay of excitatory and inhibitory synaptic currents that it receives. Meanwhile, the preferred timescale of an LN is related to its intrinsic properties. These results illustrate how a population of inhibitory interneurons can collectively encode bidirectional changes in stimulus intensity on multiple timescales, and how this can arise via an interaction between synaptic and intrinsic mechanisms. SIGNIFICANCE STATEMENT: Most neural circuits contain diverse populations of inhibitory interneurons. The way inhibition shapes network activity will depend on the spiking dynamics of the interneuron population. Here we describe the dynamics of activity in a large population of inhibitory interneurons in the first brain relay of the fruit fly olfactory system. Because odor plumes fluctuate on multiple timescales, the drive to this circuit can vary over a range of frequencies. We show how synaptic and cellular mechanisms interact to recruit different interneurons at different times, and in response to different temporal features of odor stimuli. As a result, inhibition is recruited over a range of conditions, and there is the potential to tune the timing of inhibition as the environment changes.


Asunto(s)
Antenas de Artrópodos/inervación , Interneuronas/fisiología , Animales , Antenas de Artrópodos/fisiología , Drosophila melanogaster , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Odorantes , Neuronas Receptoras Olfatorias/fisiología , Optogenética , Técnicas de Placa-Clamp , Olfato/fisiología , Sinapsis/fisiología
19.
Nat Neurosci ; 18(1): 56-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25485755

RESUMEN

Sensory stimuli fluctuate on many timescales. However, short-term plasticity causes synapses to act as temporal filters, limiting the range of frequencies that they can transmit. How synapses in vivo might transmit a range of frequencies in spite of short-term plasticity is poorly understood. The first synapse in the Drosophila olfactory system exhibits short-term depression, but can transmit broadband signals. Here we describe two mechanisms that broaden the frequency characteristics of this synapse. First, two distinct excitatory postsynaptic currents transmit signals on different timescales. Second, presynaptic inhibition dynamically updates synaptic properties to promote accurate transmission of signals across a wide range of frequencies. Inhibition is transient, but grows slowly, and simulations reveal that these two features of inhibition promote broadband synaptic transmission. Dynamic inhibition is often thought to restrict the temporal patterns that a neuron responds to, but our results illustrate a different idea: inhibition can expand the bandwidth of neural coding.


Asunto(s)
Drosophila/fisiología , Vías Nerviosas/fisiología , Odorantes , Olfato/fisiología , Sinapsis/fisiología , Animales , Axones/fisiología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Optogenética , Técnicas de Placa-Clamp , Estimulación Química
20.
Curr Opin Neurobiol ; 22(2): 216-22, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22221864

RESUMEN

Navigating toward (or away from) a remote odor source is a challenging problem that requires integrating olfactory information with visual and mechanosensory cues. Drosophila melanogaster is a useful organism for studying the neural mechanisms of these navigation behaviors. There are a wealth of genetic tools in this organism, as well as a history of inventive behavioral experiments. There is also a large and growing literature in Drosophila on the neural coding of olfactory, visual, and mechanosensory stimuli. Here we review recent progress in understanding how these stimulus modalities are encoded in the Drosophila nervous system. We also discuss what strategies a fly might use to navigate in a natural olfactory landscape while making use of all these sources of sensory information. We emphasize that Drosophila are likely to switch between multiple strategies for olfactory navigation, depending on the availability of various sensory cues. Finally, we highlight future research directions that will be important in understanding the neural circuits that underlie these behaviors.


Asunto(s)
Encéfalo/fisiología , Quimiotaxis/fisiología , Señales (Psicología) , Drosophila/fisiología , Animales , Conducta Animal/fisiología , Mecanotransducción Celular/fisiología , Vías Nerviosas/fisiología , Percepción Olfatoria , Neuronas Receptoras Olfatorias/fisiología , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...