RESUMEN
In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water potentials were quantified in soils with different relative water contents. Root anatomy was studied using histochemistry and microscopy. Suberin and lignin amounts were quantified by analytical chemistry. Transcriptomic changes were observed by RNA-sequencing. Compared with control with decreasing SWP, total root length decreased, the onset of endodermal suberization occurred much closer towards the root tips, amounts of suberin and lignin increased, and corresponding biosynthesis genes were upregulated in response to decreasing SWP. We conclude that decreasing water potentials enhanced root suberization and lignification, like osmotic stress experiments in hydroponic cultivation. However, in soil endodermal cell suberization was initiated very close towards the root tip, and root length as well as suberin amounts were about twofold higher compared with hydroponic cultivation.
RESUMEN
Aims: Root system architecture (RSA) plays an important role in the plant's ability to sustain yield under abiotic stresses such as drought. Preceding crops (precrops) can affect the yield of the proceeding crop, partially by affecting the RSA. This experiment aims to explore the interactions between precrop identity, crop genotype and drought at early growth stages. Methods: Rhizotrons, sized 60 × 80 × 3.5 cm, were used to assess the early root growth of two winter wheat (Triticum aestivum L.) genotypes, using precrop-treated soil around the seedlings and differing water regimes. The rhizotrons were automatically imaged 3 times a week to track root development. Results: Precrop-treated soil affected the RSA and changes caused by the reduced water treatment (RWT) were different depending on the precrop. Largest of these was the 36% reduction in root depth after wheat, but 44% after OSR. This indicates that effects caused by the precrop can be simulated, at least partially, by transferring precrop-treated soils to controlled environments. The genotypes had differential RSA and reacted differently to the RWT, with Julius maintaining an 8.8-13.1% deeper root system compared to Brons in the RWT. In addition, the combined environmental treatment affected the genotypes differently. Conclusion: Our results could help explain discrepancies found from using precrops to enhance yield as they indicate differences in the preceding crop effect when experiencing drought stress. Further, these differences are affected by genotypic interactions, which can be used to select and adapt crop genotypes for specific crop rotations, depending on the year. Additionally, we have shown a viable method of stimulating a partial precrop effect at the seedling stage in a controlled greenhouse setting using field soil around the germinated seed.
RESUMEN
Automated high-throughput plant phenotyping (HTPP) enables non-invasive, fast and standardized evaluations of a large number of plants for size, development, and certain physiological variables. Many research groups recognize the potential of HTPP and have made significant investments in HTPP infrastructure, or are considering doing so. To make optimal use of limited resources, it is important to plan and use these facilities prudently and to interpret the results carefully. Here we present a number of points that users should consider before purchasing, building or utilizing such equipment. They relate to (1) the financial and time investment for acquisition, operation, and maintenance, (2) the constraints associated with such machines in terms of flexibility and growth conditions, (3) the pros and cons of frequent non-destructive measurements, (4) the level of information provided by proxy traits, and (5) the utilization of calibration curves. Using data from an Arabidopsis experiment, we demonstrate how diurnal changes in leaf angle can impact plant size estimates from top-view cameras, causing deviations of more than 20% over the day. Growth analysis data from another rosette species showed that there was a curvilinear relationship between total and projected leaf area. Neglecting this curvilinearity resulted in linear calibration curves that, although having a high r2 (> 0.92), also exhibited large relative errors. Another important consideration we discussed is the frequency at which calibration curves need to be generated and whether different treatments, seasons, or genotypes require distinct calibration curves. In conclusion, HTPP systems have become a valuable addition to the toolbox of plant biologists, provided that these systems are tailored to the research questions of interest, and users are aware of both the possible pitfalls and potential involved.
RESUMEN
An ever-growing world population demands to be fed in the future and environmental protection and climate change need to be taken into account. An important factor here is nitrogen uptake efficiency (NUpE), which is influenced by the root system (the interface between plant and soil). To understand the natural variation of root system architecture (RSA) as a function of nitrogen (N) availability, a subset of the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting N treatments in a high-throughput phenotyping system at the seedling stage. Fourteen root and shoot traits were measured. Subsequently, these traits were genetically analyzed using 13,060 polymorphic haplotypes and SNPs in a genome-wide association study (GWAS). In total, 64 quantitative trait loci (QTL) were detected; 60 of them were N treatment specific. Candidate genes for the detected QTL included NRT1.1 and genes involved in stress signaling under N-, whereas candidate genes under N+ were more associated with general growth, such as mei2 and TaWOX11b. This finding may indicate (i) a disparity of the genetic control of root development under low and high N supply and, furthermore, (ii) the need for an N specific selection of genes and genotypes in breeding new wheat cultivars with improved NUpE.
RESUMEN
High temperatures inhibit plant growth. A proposed strategy for improving plant productivity under elevated temperatures is the use of plant growth-promoting rhizobacteria (PGPR). While the effects of PGPR on plant shoots have been extensively explored, roots-particularly their spatial and temporal dynamics-have been hard to study, due to their below-ground nature. Here, we characterized the time- and tissue-specific morphological changes in bacterized plants using a novel non-invasive high-resolution plant phenotyping and imaging platform-GrowScreen-Agar II. The platform uses custom-made agar plates, which allow air exchange to occur with the agar medium and enable the shoot to grow outside the compartment. The platform provides light protection to the roots, the exposure of it to the shoots, and the non-invasive phenotyping of both organs. Arabidopsis thaliana, co-cultivated with Paraburkholderia phytofirmans PsJN at elevated and ambient temperatures, showed increased lengths, growth rates, and numbers of roots. However, the magnitude and direction of the growth promotion varied depending on root type, timing, and temperature. The root length and distribution per depth and according to time was also influenced by bacterization and the temperature. The shoot biomass increased at the later stages under ambient temperature in the bacterized plants. The study offers insights into the timing of the tissue-specific, PsJN-induced morphological changes and should facilitate future molecular and biochemical studies on plant-microbe-environment interactions.
RESUMEN
Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.
Asunto(s)
Productos Agrícolas , Gravitropismo , Hordeum , Proteínas de Plantas , Raíces de Plantas , Pared Celular/química , Productos Agrícolas/química , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Gravitropismo/genética , Hordeum/química , Hordeum/genética , Hordeum/crecimiento & desarrollo , Microscopía de Fuerza Atómica , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Transcripción GenéticaRESUMEN
In face of the alarming world population growth predictions and its threat to food security, the development of sustainable fertilizer alternatives is urgent. Moreover, fertilizer performance should be assessed not only in terms of yield but also in root system development, as it impacts soil fertility and crop productivity. Fertilizers containing a polysulfide matrix (PS) with dispersed struvite (St) were studied for S and P nutrition due to their controlled-release behavior. Soybean cultivation in a closed system with St/PS composites provided superior biomass compared to a reference of triple superphosphate (TSP) with ammonium sulfate (AS), with up to 3 and 10 times higher mass of shoots and roots, respectively. Root system architectural changes may explain these results, with a higher proliferation of second order lateral roots in response to struvite ongoing P delivery. The total root length was between 1,942 and 4,291 cm for plants under St/PS composites and only 982 cm with TSP/AS. While phosphorus uptake efficiency was similar in all fertilized treatments (11-14%), St/PS achieved a 22% sulfur uptake efficiency against only 8% from TSP/AS. Overall, the composites showed great potential as efficient slow-release fertilizers for enhanced soybean productivity.
RESUMEN
Seedling establishment is the first stage of crop productivity, and root phenotypes at seed emergence are critical to a successful start of shoot growth as well as for water and nutrient uptake. In this study, we investigate seedling establishment in winter wheat utilizing a newly developed workflow based on magnetic resonance imaging (MRI). Using the eight parents of the MAGIC (multi-parent advanced generation inter-cross) population we analysed the 4D root architecture of 288 individual seedlings grown in natural soils with plant neighbors over 3 d of development. Time of root and shoot emergence, total length, angle, and depth of the axile roots varied significantly among these genotypes. The temporal data resolved rates of elongation of primary roots and first and second seminal root pairs. Genotypes with slowly elongating primary roots had rapidly elongating first and second seminal root pairs and vice versa, resulting in variation in root system architecture mediated not only by root angle but also by initiation and relative elongation of axile roots. We demonstrated that our novel MRI workflow with a unique planting design and automated measurements allowed medium throughput phenotyping of wheat roots in 4D and could give new insights into regulation of root system architecture.
Asunto(s)
Suelo , Triticum , Imagen por Resonancia Magnética , Raíces de Plantas , PlantonesRESUMEN
The root growth angle defines how roots grow toward the gravity vector and is among the most important determinants of root system architecture. It controls water uptake capacity, nutrient use efficiency, stress resilience, and, as a consequence, yield of crop plants. We demonstrated that the egt2 (enhanced gravitropism 2) mutant of barley exhibits steeper root growth of seminal and lateral roots and an auxin-independent higher responsiveness to gravity compared to wild-type plants. We cloned the EGT2 gene by a combination of bulked-segregant analysis and whole genome sequencing. Subsequent validation experiments by an independent CRISPR/Cas9 mutant allele demonstrated that egt2 encodes a STERILE ALPHA MOTIF domain-containing protein. In situ hybridization experiments illustrated that EGT2 is expressed from the root cap to the elongation zone. We demonstrated the evolutionary conserved role of EGT2 in root growth angle control between barley and wheat by knocking out the EGT2 orthologs in the A and B genomes of tetraploid durum wheat. By combining laser capture microdissection with RNA sequencing, we observed that seven expansin genes were transcriptionally down-regulated in the elongation zone. This is consistent with a role of EGT2 in this region of the root where the effect of gravity sensing is executed by differential cell elongation. Our findings suggest that EGT2 is an evolutionary conserved regulator of root growth angle in barley and wheat that could be a valuable target for root-based crop improvement strategies in cereals.
Asunto(s)
Gravitropismo , Hordeum/fisiología , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Motivo alfa Estéril , Triticum/fisiología , Pared Celular/metabolismo , Secuencia Conservada , Evolución Molecular , Técnicas de Inactivación de Genes , Genes de Plantas , Hordeum/genética , Hordeum/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Triticum/genética , Triticum/crecimiento & desarrolloRESUMEN
AIMS: Diversity of root systems among genetic resources can contribute to optimize water and nutrient uptake. Topsoil exploitation vs. deep soil exploration represent two contrasting ideotypes in relation to resource use. Our study reveals how rooting patterns changed between wheat wild progenitors and landraces in regard to these ideotypes. METHODS: Root (partitioning, morphology, distribution, elongation, anatomy) and shoot traits (dry-matter, leaf area, assimilation) of durum landraces, wild emmer and wild einkorn from Iran, Syria, Turkey and Lebanon were phenotyped using the GrowScreen-Rhizo platform. Distinctive rooting patterns were identified via principal component analysis and relations with collection site characteristics analyzed. RESULTS: Shoot trait differentiation was strongly driven by seed weight, leading to superior early vigor of landraces. Wild progenitors formed superficial root systems with a higher contribution of lateral and early-emerging nodal axes to total root length. Durum landraces had a root system dominated by seminal axes allocated evenly over depth. Xylem anatomy was the trait most affected by the environmental influence of the collection site. CONCLUSIONS: The durum landrace root system approximated a deep soil exploration ideotype which would optimize subsoil water uptake, while monococcum-type wild einkorn was most similar to a topsoil exploiting strategy with potential competitive advantages for subsistence in natural vegetation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11104-020-04794-9.
RESUMEN
Plants with improved nutrient use efficiency are needed to maintain and enhance future crop plant production. The aim of this study was to explore candidate traits for pre-breeding to improve nutrient accumulation and early vigor of spring wheat grown at high latitudes. We quantified shoot and root traits together with nutrient accumulation in nine contrasting spring wheat genotypes grown in rhizoboxes for 20 days in a greenhouse. Whole-plant relative growth rate was here correlated with leaf area productivity and plant nitrogen productivity, but not leaf area ratio. Furthermore, the total leaf area was correlated with the accumulation of six macronutrients, and could be suggested as a candidate trait for the pre-breeding towards improved nutrient accumulation and early vigor in wheat to be grown in high-latitude environments. Depending on the nutrient of interest, different root system traits were identified as relevant for their accumulation. Accumulation of nitrogen, potassium, sulfur and calcium was correlated with lateral root length, whilst accumulation of phosphorus and magnesium was correlated with main root length. Therefore, special attention needs to be paid to specific root system traits in the breeding of wheat towards improved nutrient accumulation to counteract the suboptimal uptake of some nutrient elements.
RESUMEN
BACKGROUND: Root system architecture and especially its plasticity in acclimation to variable environments play a crucial role in the ability of plants to explore and acquire efficiently soil resources and ensure plant productivity. Non-destructive measurement methods are indispensable to quantify dynamic growth traits. For closing the phenotyping gap, we have developed an automated phenotyping platform, GrowScreen-Agar, for non-destructive characterization of root and shoot traits of plants grown in transparent agar medium. RESULTS: The phenotyping system is capable to phenotype root systems and correlate them to whole plant development of up to 280 Arabidopsis plants within 15 min. The potential of the platform has been demonstrated by quantifying phenotypic differences within 78 Arabidopsis accessions from the 1001 genomes project. The chosen concept 'plant-to-sensor' is based on transporting plants to the imaging position, which allows for flexible experimental size and design. As transporting causes mechanical vibrations of plants, we have validated that daily imaging, and consequently, moving plants has negligible influence on plant development. Plants are cultivated in square Petri dishes modified to allow the shoot to grow in the ambient air while the roots grow inside the Petri dish filled with agar. Because it is common practice in the scientific community to grow Arabidopsis plants completely enclosed in Petri dishes, we compared development of plants that had the shoot inside with that of plants that had the shoot outside the plate. Roots of plants grown completely inside the Petri dish grew 58% slower, produced a 1.8 times higher lateral root density and showed an etiolated shoot whereas plants whose shoot grew outside the plate formed a rosette. In addition, the setup with the shoot growing outside the plate offers the unique option to accurately measure both, leaf and root traits, non-destructively, and treat roots and shoots separately. CONCLUSIONS: Because the GrowScreen-Agar system can be moved from one growth chamber to another, plants can be phenotyped under a wide range of environmental conditions including future climate scenarios. In combination with a measurement throughput enabling phenotyping a large set of mutants or accessions, the platform will contribute to the identification of key genes.
RESUMEN
Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today's phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems.
Asunto(s)
Cruzamiento , Raíces de Plantas , Fenotipo , Rizosfera , SemillasRESUMEN
Drought tolerance is a complex phenomenon comprising many physiological, biochemical and morphological changes at both aerial and below ground levels. We aim to reveal changes on root morphology that promote drought tolerance in oat in both seedling and adult plants. To this aim, we employed two oat genotypes, previously characterized as susceptible and tolerant to drought. Root phenotyping was carried out on young plants grown either in pots or in rhizotrons under controlled environments, and on adult plants grown in big containers under field conditions. Overall, the tolerant genotype showed an increased root length, branching rate, root surface, and length of fine roots, while coarse to fine ratio decreased as compared with the susceptible genotype. We also observed a high and significant correlation between various morphological root traits within and between experiments, identifying several of them as appropriate markers to identify drought tolerant oat genotypes. Stimulation of fine root growth was one of the most prominent responses to cope with gradual soil water depletion, in both seedlings and adult plants. Although seedling experiments did not exactly match the response of adult plants, they were similarly informative for discriminating between tolerant and susceptible genotypes. This might contribute to easier and faster phenotyping of large amount of plants.
RESUMEN
Water deficit may occur at any stage of plant growth, with any intensity and duration. Phenotypic acclimation and the mechanism of adaptation vary with the evolutionary background of germplasm accessions and their stage of growth. Faba bean is considered sensitive to various kinds of drought. Hence, we conducted a greenhouse experiment in rhizotrons under contrasting watering regimes to explore shoot and root traits and drought avoidance mechanisms in young faba bean plants. Eight accessions were investigated for shoot and root morphological and physiological responses in two watering conditions with four replications. Pre-germinated seedlings were transplanted into rhizotron boxes filled with either air-dried or moist peat. The water-limited plants received 50-ml water at transplanting and another 50-ml water 4 days later, then no water was given until the end of the experimental period, 24 days after transplanting. The well-watered plants received 100 ml of water every 12 h throughout the experimental period. Root, stem, and leaf dry mass, their mass fractions, their dry matter contents, apparent specific root length and density, stomatal conductance, SPAD value, and Fv/Fm were recorded. Water deficit resulted in 3-4-fold reductions in shoot biomass, root biomass, and stomatal conductance along with 1.2-1.4-fold increases in leaf and stem dry matter content and SPAD values. Total dry mass and apparent root length density showed accession by treatment interactions. Accessions DS70622, DS11320, and ILB938/2 shared relatively high values of total dry mass and low values of stomatal conductance under water deficit but differed in root distribution parameters. In both treatments, DS70622 was characterized by finer roots that were distributed in both depth and width, whereas DS11320 and ILB938/2 produced less densely growing, thicker roots. French accession Mélodie/2 was susceptible to drought in the vegetative phase, in contrast to previous results from the flowering phase, showing the importance of timing of drought stress on the measured response. Syrian accession DS70622 explored the maximum root volume and maintained its dry matter production, with the difference from the other accessions being particularly large in the water-limited treatment, so it is a valuable source of traits for avoiding transient drought.
RESUMEN
Improving fertility of marginal soils for the sustainable production of biomass is a strategy for reducing land use conflicts between food and energy crops. Digestates can be used as fertilizer and for soil amelioration. In order to promote plant growth and reduce potential adverse effects on roots because of broadcast digestate fertilization, we propose to apply local digestate depots placed into the rhizosphere. We grew Sida hermaphrodita in large mesocosms outdoors for three growing seasons and in rhizotrons in the greenhouse for 3 months both filled with marginal substrate, including multiple sampling dates. We compared digestate broadcast application with digestate depot fertilization and a mineral fertilizer control. We show that depot fertilization promotes a deep reaching root system of S. hermaphrodita seedlings followed by the formation of a dense root cluster around the depot-fertilized zone, resulting in a fivefold increased biomass yield. Temporal adverse effects on root growth were linked to high initial concentrations of ammonium and nitrite in the rhizosphere in either fertilizer application, followed by a high biomass increase after its microbial conversion to nitrate. We conclude that digestate depot fertilization can contribute to an improved cultivation of perennial energy-crops on marginal soils.
RESUMEN
BACKGROUND: Soil moisture deficiency causes yield reduction and instability in faba bean (Vicia faba L.) production. The extent of sensitivity to drought stress varies across accessions originating from diverse moisture regimes of the world. Hence, we conducted successive greenhouse experiments in pots and rhizotrons to explore diversity in root responses to soil water deficit. METHODS: A set of 89 accessions from wet and dry growing regions of the world was defined according to the Focused Identification of Germplasm Strategy and screened in a perlite-sand medium under well watered conditions in a greenhouse experiment. Stomatal conductance, canopy temperature, chlorophyll concentration, and root and shoot dry weights were recorded during the fifth week of growth. Eight accessions representing the range of responses were selected for further investigation. Starting five days after germination, they were subjected to a root phenotyping experiment using the automated phenotyping platform GROWSCREEN-Rhizo. The rhizotrons were filled with peat-soil under well watered and water limited conditions. Root architectural traits were recorded five, 12, and 19 days after the treatment (DAT) began. RESULTS: In the germplasm survey, accessions from dry regions showed significantly higher values of chlorophyll concentration, shoot and root dry weights than those from wet regions. Root and shoot dry weight as well as seed weight, and chlorophyll concentration were positively correlated with each other. Accession DS70622 combined higher values of root and shoot dry weight than the rest. The experiment in GROWSCREEN-Rhizo showed large differences in root response to water deficit. The accession by treatment interactions in taproot and second order lateral root lengths were significant at 12 and 19 DAT, and the taproot length was reduced up to 57% by drought. The longest and deepest root systems under both treatment conditions were recorded by DS70622 and DS11320, and total root length of DS70622 was three times longer than that of WS99501, the shortest rooted accession. The maximum horizontal distribution of a root system and root surface coverage were positively correlated with taproot and total root lengths and root system depth. DS70622 and WS99501 combined maximum and minimum values of these traits, respectively. Thus, roots of DS70622 and DS11320, from dry regions, showed drought-avoidance characteristics whereas those of WS99501 and Mèlodie/2, from wet regions, showed the opposite. DISCUSSION: The combination of the germplasm survey and use of GROWSCREEN-Rhizo allowed exploring of adaptive traits and detection of root phenotypic markers for potential drought avoidance. The greater root system depth and root surface coverage, exemplified by DS70622 and DS11320, can now be tested as new sources of drought tolerance.
RESUMEN
Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research.
Asunto(s)
Fenotipo , Pisum sativum/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Genotipo , Modelos Genéticos , Pisum sativum/genética , Raíces de Plantas/genética , Plantones/genéticaRESUMEN
Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a modifier of root architecture and that root traits and their utility in breeding for greater productivity have to be understood in the context of high sowing densities.