Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
HGG Adv ; 4(4): 100229, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37654703

RESUMEN

There is an emblematic clinical and genetic heterogeneity associated with inherited retinal diseases (IRDs). The most common form is retinitis pigmentosa (RP), a rod-cone dystrophy caused by pathogenic variants in over 80 different genes. Further complexifying diagnosis, different variants in individual RP genes can also alter the clinical phenotype. USH2A is the most prevalent gene for autosomal-recessive RP and one of the most challenging because of its large size and, hence, large number of variants. Moreover, USH2A variants give rise to non-syndromic and syndromic RP, known as Usher syndrome (USH) type 2, which is associated with vision and hearing loss. The lack of a clear genotype-phenotype correlation or prognostic models renders diagnosis highly challenging. We report here a long-awaited differential non-syndromic RP and USH phenotype in three human disease-specific models: fibroblasts, induced pluripotent stem cells (iPSCs), and mature iPSC-derived retinal organoids. Moreover, we identified distinct retinal phenotypes in organoids from multiple RP and USH individuals, which were validated by isogenic-corrected controls. Non-syndromic RP organoids showed compromised photoreceptor differentiation, whereas USH organoids showed a striking and unexpected cone phenotype. Furthermore, complementary clinical investigations identified macular atrophy in a high proportion of USH compared with RP individuals, further validating our observations that USH2A variants differentially affect cones. Overall, identification of distinct non-syndromic RP and USH phenotypes in multiple models provides valuable and robust readouts for testing the pathogenicity of USH2A variants as well as the efficacy of therapeutic approaches in complementary cell types.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Retinitis Pigmentosa/diagnóstico , Organoides , Fenotipo , Proteínas de la Matriz Extracelular/genética
2.
Front Cell Dev Biol ; 11: 1130058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846582

RESUMEN

Human Usher syndrome (USH) is the most common form of hereditary combined deaf-blindness. USH is a complex genetic disorder, and the pathomechanisms underlying the disease are far from being understood, especially in the eye and retina. The USH1C gene encodes the scaffold protein harmonin which organizes protein networks due to binary interactions with other proteins, such as all USH proteins. Interestingly, only the retina and inner ear show a disease-related phenotype, although USH1C/harmonin is almost ubiquitously expressed in the human body and upregulated in colorectal cancer. We show that harmonin binds to ß-catenin, the key effector of the canonical Wnt (cWnt) signaling pathway. We also demonstrate the interaction of the scaffold protein USH1C/harmonin with the stabilized acetylated ß-catenin, especially in nuclei. In HEK293T cells, overexpression of USH1C/harmonin significantly reduced cWnt signaling, but a USH1C-R31* mutated form did not. Concordantly, we observed an increase in cWnt signaling in dermal fibroblasts derived from an USH1C R31*/R80Pfs*69 patient compared with healthy donor cells. RNAseq analysis reveals that both the expression of genes related to the cWnt signaling pathway and cWnt target genes were significantly altered in USH1C patient-derived fibroblasts compared to healthy donor cells. Finally, we show that the altered cWnt signaling was reverted in USH1C patient fibroblast cells by the application of Ataluren, a small molecule suitable to induce translational read-through of nonsense mutations, hereby restoring some USH1C expression. Our results demonstrate a cWnt signaling phenotype in USH establishing USH1C/harmonin as a suppressor of the cWnt/ß-catenin pathway.

3.
Hum Mol Genet ; 32(3): 431-449, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35997788

RESUMEN

Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).


Asunto(s)
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Síndromes de Usher/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
Cells ; 11(18)2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36139365

RESUMEN

The very large G protein-coupled receptor (VLGR1, ADGRV1) is the largest member of the adhesion GPCR family. Mutations in VLGR1 have been associated with the human Usher syndrome (USH), the most common form of inherited deaf-blindness as well as childhood absence epilepsy. VLGR1 was previously found as membrane-membrane adhesion complexes and focal adhesions. Affinity proteomics revealed that in the interactome of VLGR1, molecules are enriched that are associated with both the ER and mitochondria, as well as mitochondria-associated ER membranes (MAMs), a compartment at the contact sites of both organelles. We confirmed the interaction of VLGR1 with key proteins of MAMs by pull-down assays in vitro complemented by in situ proximity ligation assays in cells. Immunocytochemistry by light and electron microscopy demonstrated the localization of VLGR1 in MAMs. The absence of VLGR1 in tissues and cells derived from VLGR1-deficient mouse models resulted in alterations in the MAM architecture and in the dysregulation of the Ca2+ transient from ER to mitochondria. Our data demonstrate the molecular and functional interaction of VLGR1 with components in MAMs and point to an essential role of VLGR1 in the regulation of Ca2+ homeostasis, one of the key functions of MAMs.


Asunto(s)
Retículo Endoplásmico , Membranas Mitocondriales , Animales , Niño , Retículo Endoplásmico/metabolismo , Homeostasis , Humanos , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
5.
Invest Ophthalmol Vis Sci ; 63(8): 3, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35816047

RESUMEN

Purpose: The aim of this study was to explore the roles of crystallins in the context of aging in glaucoma and potential mechanisms of neuroprotection in an experimental animal model of glaucoma. Methods: Intraocular pressure (IOP) was significantly elevated for 8 weeks in animals at different ages (10 days, 12 weeks, and 44 weeks) by episcleral vein cauterization. Retinal ganglion cells (RGCs) were quantified by anti-Brn3a immunohistochemical staining (IHC). Proteomics using ESI-LTQ Orbitrap XL-MS was used to analyze the presence and abundance of crystallin isoforms the retinal samples, respectively. Neuroprotective property and localization of three selected crystallins CRYAB, CRYBB2, and CRYGB as most significantly changed in retina and retinal layers were determined by IHC. Their expressions and endocytic uptakes into Müller cells were analyzed by IHC and Western blotting. Müller cell secretion of neurotrophic factors into the supernatant following CRYAB, CRYBB2, and CRYGB supplementation in vitro was measured via microarray. Results: IOP elevation resulted in significant RGC loss in all age groups (P < 0.001). The loss increased with aging. Proteomics analysis revealed in parallel a significant decrease of crystallin abundance - especially CRYAB, CRYBB2, and CRYGB. Significant neuroprotective effects of CRYAB, CRYBB2, and CRYGB after addition to retinal cultures were demonstrated (P < 0.001). Endocytic uptake of CRYAB, CRYBB2, and CRYGB was seen in Müller cells with subsequent increased secretion of various neurotrophic factors into the supernatant, including nerve growth factor, clusterin, and matrix metallopeptidase 9. Conclusions: An age-dependent decrease in CRYAB, CRYBB2, and CRYGB abundance is found going along with increased RGC loss. Addition of CRYAB, CRYBB2, and CRYGB to culture protected RGCs in vitro. CRYAB, CRYBB2, and CRYGB were uptaken into Müller cells. Secretion of neurotrophic factors was increased as a potential mode of action.


Asunto(s)
Cristalinas , Glaucoma , Animales , Supervivencia Celular/fisiología , Cristalinas/metabolismo , Modelos Animales de Enfermedad , Células Ependimogliales/metabolismo , Glaucoma/metabolismo , Presión Intraocular , Factores de Crecimiento Nervioso
6.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408898

RESUMEN

Ataluren and Gentamicin are translational readthrough drugs (TRIDs) that induce premature termination codon (PTC) readthrough, resulting in the production of full-length proteins that usually harbor a single missense substitution. FAM161A is a ciliary protein which is expressed in photoreceptors, and pathogenic variants in this gene cause retinitis pigmentosa (RP). Applying TRIDs on fibroblasts from RP patients due to PTC in the FAM161A (p.Arg523*) gene may uncover whether TRIDs can restore expression, localization and function of this protein. Fibroblasts from six patients and five age-matched controls were starved prior to treatment with ataluren or gentamicin, and later FAM161A expression, ciliogenesis and cilia length were analyzed. In contrast to control cells, fibroblasts of patients did not express the FAM161A protein, showed a lower percentage of ciliated cells and grew shorter cilia after starvation. Ataluren and Gentamicin treatment were able to restore FAM161A expression, localization and co-localization with α-tubulin. Ciliogenesis and cilia length were restored following Ataluren treatment almost up to a level which was observed in control cells. Gentamicin was less efficient in ciliogenesis compared to Ataluren. Our results provide a proof-of-concept that PTCs in FAM161A can be effectively suppressed by Ataluren or Gentamicin, resulting in a full-length functional protein.


Asunto(s)
Codón sin Sentido , Retinitis Pigmentosa , Codón sin Sentido/metabolismo , Proteínas del Ojo/metabolismo , Fibroblastos/metabolismo , Gentamicinas/farmacología , Gentamicinas/uso terapéutico , Humanos , Biosíntesis de Proteínas , Proteínas/metabolismo , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo
7.
EMBO Mol Med ; 14(4): e14817, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35254721

RESUMEN

Usher syndrome (USH) is the most common form of monogenic deaf-blindness. Loss of vision is untreatable and there are no suitable animal models for testing therapeutic strategies of the ocular constituent of USH, so far. By introducing a human mutation into the harmonin-encoding USH1C gene in pigs, we generated the first translational animal model for USH type 1 with characteristic hearing defect, vestibular dysfunction, and visual impairment. Changes in photoreceptor architecture, quantitative motion analysis, and electroretinography were characteristics of the reduced retinal virtue in USH1C pigs. Fibroblasts from USH1C pigs or USH1C patients showed significantly elongated primary cilia, confirming USH as a true and general ciliopathy. Primary cells also proved their capacity for assessing the therapeutic potential of CRISPR/Cas-mediated gene repair or gene therapy in vitro. AAV-based delivery of harmonin into the eye of USH1C pigs indicated therapeutic efficacy in vivo.


Asunto(s)
Síndromes de Usher , Animales , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto , Humanos , Células Fotorreceptoras , Porcinos , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/terapia
8.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502064

RESUMEN

Retinitis pigmentosa (RP) is an inherited retinal disease (IRD) with an overall prevalence of 1 in 4000 individuals. Mutations in EYS (Eyes shut homolog) are among the most frequent causes of non-syndromic autosomal recessively inherited RP and act via a loss-of-function mechanism. In light of the recent successes for other IRDs, we investigated the therapeutic potential of exon skipping for EYS-associated RP. CRISPR/Cas9 was employed to generate zebrafish from which the region encompassing the orthologous exons 37-41 of human EYS (eys exons 40-44) was excised from the genome. The excision of these exons was predicted to maintain the open reading frame and to result in the removal of exactly one Laminin G and two EGF domains. Although the eysΔexon40-44 transcript was found at levels comparable to wild-type eys, and no unwanted off-target modifications were identified within the eys coding sequence after single-molecule sequencing, EysΔexon40-44 protein expression could not be detected. Visual motor response experiments revealed that eysΔexon40-44 larvae were visually impaired and histological analysis revealed a progressive degeneration of the retinal outer nuclear layer in these zebrafish. Altogether, the data obtained in our zebrafish model currently provide no indications for the skipping of EYS exons 37-41 as an effective future treatment strategy for EYS-associated RP.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Retinitis Pigmentosa/genética , Proteínas de Pez Cebra/genética , Animales , Sistemas CRISPR-Cas , Exones , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Terapia Genética/métodos , Fenotipo , Dominios Proteicos , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/terapia , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
9.
Cell Stem Cell ; 28(10): 1740-1757.e8, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34407456

RESUMEN

During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Diferenciación Celular , Desarrollo Embrionario , Humanos , Organogénesis , Prosencéfalo
10.
Environ Microbiol ; 23(5): 2564-2577, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33754467

RESUMEN

C4-dicarboxylates, such as fumarate, l-malate and l-aspartate represent substrates for anaerobic growth of Escherichia coli by fumarate respiration. Here, we determined whether C4-dicarboxylate metabolism, as well as fumarate respiration, contribute to colonization of the mammalian intestinal tract. Metabolite profiling revealed that the murine small intestine contained high and low levels of l-aspartate and l-malate respectively, whereas fumarate was nearly absent. Under laboratory conditions, addition of C4-dicarboxylate at concentrations corresponding to the levels of the C4-dicarboxylates in the small intestine (2.6 mmol kg-1 dry weight) induced the dcuBp-lacZ reporter gene (67% of maximal) in a DcuS-DcuR-dependent manner. In addition to its role as a precursor for fumarate respiration, l-aspartate was able to supply all the nitrogen required for anaerobically growing E. coli. DcuS-DcuR-dependent genes were transcribed in the murine intestine, and mutants with defective anaerobic C4-dicarboxylate metabolism (dcuSR, frdA, dcuB, dcuA and aspA genes) were impaired for colonizing the murine gut. We conclude that l-aspartate plays an important role in providing fumarate for fumarate respiration and supplying nitrogen for E. coli in the mouse intestine.


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Animales , Ácido Aspártico/metabolismo , Proteínas de Unión al ADN , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fumaratos , Regulación Bacteriana de la Expresión Génica , Intestinos , Ratones , Nitrógeno , Proteínas Quinasas/metabolismo , Respiración , Factores de Transcripción/genética
11.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182541

RESUMEN

X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, TranslamaTM) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* (NM_000328.3) causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases.


Asunto(s)
Codón sin Sentido/efectos de los fármacos , Proteínas del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/tratamiento farmacológico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Proteínas Mutantes/genética , Oxadiazoles/uso terapéutico , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Estudios de Casos y Controles , Células Cultivadas , Cilios/metabolismo , Proteínas del Ojo/biosíntesis , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Células HEK293 , Hemicigoto , Humanos , Proteínas Mutantes/biosíntesis , Prueba de Estudio Conceptual , Biosíntesis de Proteínas/efectos de los fármacos , Estabilidad del ARN , Retinitis Pigmentosa/metabolismo
12.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842393

RESUMEN

The identification of genetic defects that underlie inherited retinal diseases (IRDs) paves the way for the development of therapeutic strategies. Nonsense mutations caused approximately 12% of all IRD cases, resulting in a premature termination codon (PTC). Therefore, an approach that targets nonsense mutations could be a promising pharmacogenetic strategy for the treatment of IRDs. Small molecules (translational read-through inducing drugs; TRIDs) have the potential to mediate the read-through of nonsense mutations by inducing expression of the full-length protein. We provide novel data on the read-through efficacy of Ataluren on a nonsense mutation in the Usher syndrome gene USH2A that causes deaf-blindness in humans. We demonstrate Ataluren´s efficacy in both transiently USH2AG3142*-transfected HEK293T cells and patient-derived fibroblasts by restoring USH2A protein expression. Furthermore, we observed enhanced ciliogenesis in patient-derived fibroblasts after treatment with TRIDs, thereby restoring a phenotype that is similar to that found in healthy donors. In light of recent findings, we validated Ataluren´s efficacy to induce read-through on a nonsense mutation in USH2A-related IRD. In line with published data, our findings support the use of patient-derived fibroblasts as a platform for the validation of preclinical therapies. The excellent biocompatibility combined with sustained read-through efficacy makes Ataluren an ideal TRID for treating nonsense mutations based IRDs.


Asunto(s)
Codón sin Sentido , Oxadiazoles/uso terapéutico , Síndromes de Usher/tratamiento farmacológico , Síndromes de Usher/genética , Células Cultivadas , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Inmunohistoquímica , Modelos Biológicos , Mutación , Oxadiazoles/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Síndromes de Usher/diagnóstico
13.
Biomacromolecules ; 20(12): 4389-4406, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31686497

RESUMEN

Despite the first successful applications of nonviral delivery vectors for small interfering RNA in the treatment of illnesses, such as the respiratory syncytial virus infection, the preparation of a clinically suitable, safe, and efficient delivery system still remains a challenge. In this study, we tackle the drawbacks of the existing systems by a combined experimental-computational in-depth investigation of the influence of the polymer architecture over the binding and transfection efficiency. For that purpose, a library of diblock copolymers with a molar mass of 30 kDa and a narrow dispersity (D < 1.12) was synthesized. We studied in detail the impact of an altered block size and/or composition of cationic diblock copolymers on the viability of each respective structure as a delivery agent for polynucleotides. The experimental investigation was further complemented by a computational study employing molecular simulations as well as an analytical description of systemic properties. This is the first report in which molecular dynamics simulations of RNA/cationic polymer complexes have been performed. Specifically, we developed and employed a coarse-grained model of the system at the molecular level to study the interactions between polymer chains and small interfering RNA. We were further able to confirm a threshold lengthbinding block/lengthnonbinding block ratio, which is required for efficient complexation of siRNA, and it was possible to find a correlation between the length of the cationic block and the size of the resulting polyplex. Hence, the combined insights from the experiments and the theoretical investigation resulted in a wealth of information about the properties of cationic diblock copolymers employed as RNA delivery agents, in particular regarding the molecular and mechanistic details of the interaction between the two components of a polyplex.


Asunto(s)
Simulación por Computador , Sistemas de Liberación de Medicamentos , Modelos Químicos , ARN Interferente Pequeño , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/farmacología
14.
Klin Monbl Augenheilkd ; 235(3): 273-280, 2018 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-29534264

RESUMEN

The human Usher syndrome (USH) is a complex, rare disease manifesting in its most common form of inherited deaf-blindness. Due to the heterogeneous manifestation of the clinical symptoms, three clinical types (USH1-3) are distinguished according to the severity of the disease pattern. For a correct diagnosis, in addition to the auditory tests in early newborn screening, ophthalmological examinations and molecular genetic analysis are important. Ten known USH genes encode proteins, which are from heterogeneous protein families, interact in functional protein networks. In the eye and in the ear, USH proteins are expressed primarily in the mechano-sensitive hair cells and the rod and cone photoreceptor cells, respectively. In the hair cells, the USH protein networks are essential for the correct differentiation of the hair bundles as well as for the function of the mechano-electrical transduction complex in the matured cell. In the photoreceptor cells, USH proteins are located in the ciliary region and participate in intracellular transport processes. In addition, a USH protein network is present in the so-called calyceal processes. The lack of calyceal processes and the absence of a prominent visual phenotype in the mouse disqualifies mice as models for studies on the ophthalmic component of USH. While hearing impairments can be compensated with hearing aids and cochlear implants, there is no practical therapy for USH in the eye. Currently, gene-based therapy concepts, such as gene addition, applications of antisense oligonucleotides and TRIDs ("translational readthrough inducing drugs") for the readthrough of nonsense mutations are preclinically evaluated. For USH1B/MYO7A the UshStat gene therapy clinical trial is ongoing.


Asunto(s)
Ciliopatías/diagnóstico , Enfermedades Raras , Síndromes de Usher/diagnóstico , Animales , Ciliopatías/clasificación , Ciliopatías/genética , Ciliopatías/terapia , Análisis Mutacional de ADN , Trastornos Sordoceguera/clasificación , Trastornos Sordoceguera/diagnóstico , Trastornos Sordoceguera/genética , Trastornos Sordoceguera/terapia , Modelos Animales de Enfermedad , Femenino , Humanos , Recién Nacido , Ratones , Tamizaje Neonatal , Células Fotorreceptoras de Vertebrados/fisiología , Embarazo , Síndromes de Usher/clasificación , Síndromes de Usher/genética , Síndromes de Usher/terapia
15.
Mol Genet Genomic Med ; 5(5): 531-552, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28944237

RESUMEN

BACKGROUND: Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). METHODS: Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array-CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. RESULTS: A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array-CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124-induced read-through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3, genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. CONCLUSION: Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.

16.
Prog Retin Eye Res ; 60: 144-180, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28504201

RESUMEN

Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.


Asunto(s)
Cilios/fisiología , Oftalmopatías/fisiopatología , Visión Ocular/fisiología , Ojo/citología , Oftalmopatías/patología , Oftalmopatías/terapia , Humanos
17.
Hum Mol Genet ; 26(6): 1157-1172, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28137943

RESUMEN

The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS.


Asunto(s)
Trastornos Sordoceguera/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Síndromes de Usher/genética , Trastornos Sordoceguera/patología , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Humanos , Proteínas de la Membrana/química , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología , Unión Proteica , Mapas de Interacción de Proteínas/genética , Estructura Terciaria de Proteína , Síndromes de Usher/complicaciones , Síndromes de Usher/patología
19.
BioDrugs ; 30(2): 49-74, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26886021

RESUMEN

In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12% of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.


Asunto(s)
Codón sin Sentido/efectos de los fármacos , Enfermedades Genéticas Congénitas/tratamiento farmacológico , Preparaciones Farmacéuticas/administración & dosificación , Animales , Enfermedades Genéticas Congénitas/genética , Terapia Genética/métodos , Genotipo , Humanos , ARN Mensajero/genética
20.
PLoS One ; 11(2): e0148874, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26881841

RESUMEN

Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken ß-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.


Asunto(s)
Terapia Genética , Proteínas de la Membrana/biosíntesis , Degeneración Retiniana/genética , Síndromes de Usher/genética , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Ratones , Retina/metabolismo , Retina/patología , Degeneración Retiniana/patología , Degeneración Retiniana/terapia , Síndromes de Usher/patología , Síndromes de Usher/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA