Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
J Dev Biol ; 11(1)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36976101

RESUMEN

The epidermal barrier of mammals is initially formed during embryonic development and continuously regenerated by the differentiation and cornification of keratinocytes in postnatal life. Cornification is associated with the breakdown of organelles and other cell components by mechanisms which are only incompletely understood. Here, we investigated whether heme oxygenase 1 (HO-1), which converts heme into biliverdin, ferrous iron and carbon monoxide, is required for normal cornification of epidermal keratinocytes. We show that HO-1 is transcriptionally upregulated during the terminal differentiation of human keratinocytes in vitro and in vivo. Immunohistochemistry demonstrated expression of HO-1 in the granular layer of the epidermis where keratinocytes undergo cornification. Next, we deleted the Hmox1 gene, which encodes HO-1, by crossing Hmox1-floxed and K14-Cre mice. The epidermis and isolated keratinocytes of the resulting Hmox1f/f K14-Cre mice lacked HO-1 expression. The genetic inactivation of HO-1 did not impair the expression of keratinocyte differentiation markers, loricrin and filaggrin. Likewise, the transglutaminase activity and formation of the stratum corneum were not altered in Hmox1f/f K14-Cre mice, suggesting that HO-1 is dispensable for epidermal cornification. The genetically modified mice generated in this study may be useful for future investigations of the potential roles of epidermal HO-1 in iron metabolism and responses to oxidative stress.

3.
Biofactors ; 49(3): 684-698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36772996

RESUMEN

NRF2 is a master regulator of the cellular protection against oxidative damage in mammals and of multiple pathways relevant in the mammalian aging process. In the epidermis of the skin NRF2 contributes additionally to the formation of an antioxidant barrier to protect from environmental insults and is involved in the differentiation process of keratinocytes. In chronological aging of skin, the capacity for antioxidant responses and the ability to restore homeostasis after damage are impaired. Surprisingly, in absence of extrinsic stressors, NRF2 deficient mice do not show any obvious skin phenotype, not even at old age. We investigated the differences in chronological epidermal aging of wild type and NRF2-deficient mice to identify the changes in aged epidermis that may compensate for absence of this important transcriptional regulator. While both genotypes showed elevated epidermal senescence markers (increased Lysophospholipids, decreased LaminB1 expression), the aged NRF2 deficient mice displayed disturbed epidermal differentiation manifested in irregular keratin 10 and loricrin expression. The tail skin displayed less age-related epidermal thinning and a less pronounced decline in proliferating basal epidermal cells compared to the wildtype controls. The stratum corneum lipid composition also differed, as we observed elevated production of barrier protective linoleic acid (C18:2) and reduced abundance of longer chain saturated lignoceric acid (C24:0) among the stratum corneum fatty acids in the aged NRF2-deficient mice. Thus, despite epidermal differentiation being disturbed in aged NRF2-deficient animals in homeostasis, adaptations in keratinocyte proliferation and barrier lipid synthesis could explain the lack of a more severe phenotype.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Cola (estructura animal) , Epidermis/metabolismo , Células Epidérmicas , Queratinocitos , Diferenciación Celular/genética , Envejecimiento/genética , Mamíferos
4.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232414

RESUMEN

Autophagy is a controlled mechanism of intracellular self-digestion with functions in metabolic adaptation to stress, in development, in proteostasis and in maintaining cellular homeostasis in ageing. Deletion of autophagy in epidermal keratinocytes does not prevent the formation of a functional epidermis and the permeability barrier but causes increased susceptibility to damage stress and metabolic alterations and accelerated ageing phenotypes. We here investigated how epidermal autophagy deficiency using Keratin 14 driven Atg7 deletion would affect the lipid composition of the epidermis of young and old mice. Using mass spectrometric lipidomics we found a reduction of age-related accumulation of storage lipids in the epidermis of autophagy-deficient mice, and specific changes in chain length and saturation of fatty acids in several lipid classes. Transcriptomics and immunostaining suggest that these changes are accompanied by changes in expression and localisation of lipid and fatty acid transporter proteins, most notably fatty acid binding protein 5 (FABP5) in autophagy knockouts. Thus, maintaining autophagic activity at an advanced age may be necessary to maintain epidermal lipid homeostasis in mammals.


Asunto(s)
Epidermis , Lipidómica , Animales , Autofagia/genética , Epidermis/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Queratina-14 , Lípidos , Mamíferos/metabolismo , Ratones
5.
Amino Acids ; 54(9): 1311-1326, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35817992

RESUMEN

Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.


Asunto(s)
Fosfolípidos , Fosforilcolina , Anciano , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Trastornos de la Memoria/metabolismo , Fosfolípidos/metabolismo , Fosforilcolina/metabolismo , Ratas
6.
Autophagy ; 18(5): 1005-1019, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34491140

RESUMEN

ABBREVIATIONS: ATG7: autophagy related 7; BODIPY: boron dipyrromethene; DAG: diacyl glycerides; DBI: diazepam binding inhibitor; GFP: green fluorescent protein; KRT14: keratin 14; HPLC-MS: high performance liquid chromatography-mass spectrometry; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MSI: mass spectrometric imaging; ORO: Oil Red O; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: preputial gland; PLIN2: perilipin 2; PtdIns: phosphatidylinositol; PL: phospholipids; POPC: 1-palmitoyl-2-oleoyl-PC; PS: phosphatidylserine; qRT-PCR: quantitative reverse transcribed PCR; SG: sebaceous gland; scRNAseq: single-cell RNA sequencing; TAG: triacylglycerides; TLC: thin layer chromatography.


Asunto(s)
Envejecimiento Prematuro , Sebo , Animales , Autofagia/genética , Ratones , Perilipina-2 , Feromonas , Fosfatidilserinas , Fosfolípidos
7.
J Invest Dermatol ; 141(4S): 993-1006.e15, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33333126

RESUMEN

During aging, skin accumulates senescent cells. The transient presence of senescent cells, followed by their clearance by the immune system, is important in tissue repair and homeostasis. The persistence of senescent cells that evade clearance contributes to the age-related deterioration of the skin. The senescence-associated secretory phenotype of these cells contains immunomodulatory molecules that facilitate clearance but also promote chronic damage. Here, we investigated the epilipidome-the oxidative modifications of phospholipids-of senescent dermal fibroblasts, because these molecules are among the bioactive lipids that were recently identified as senescence-associated secretory phenotype factors. Using replicative- and stress- induced senescence protocols, we identified lysophosphatidylcholines as universally elevated in senescent fibroblasts, whereas other oxidized lipids displayed a pattern that was characteristic for the used senescence protocol. When we tested the lysophosphatidylcholines for senescence-associated secretory phenotype activity, we found that they elicit chemokine release in nonsenescent fibroblasts but also interfere with toll-like receptor 2 and 6/CD36 signaling and phagocytic capacity in macrophages. Using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging, we localized two lysophosphatidylcholine species in aged skin. This suggests that lysophospholipids may facilitate immune evasion and low-grade chronic inflammation in skin aging.


Asunto(s)
Senescencia Celular/inmunología , Dermis/patología , Fibroblastos/patología , Lisofosfatidilcolinas/metabolismo , Envejecimiento de la Piel/inmunología , Anciano , Células Cultivadas , Quimiocinas/metabolismo , Dermis/citología , Dermis/inmunología , Femenino , Fibroblastos/inmunología , Fibroblastos/metabolismo , Humanos , Inflamación/inmunología , Inflamación/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Persona de Mediana Edad , Oxidación-Reducción , Fagocitosis/inmunología , Cultivo Primario de Células
8.
Redox Biol ; 37: 101583, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32713735

RESUMEN

The epidermis is a multi-layered epithelium that consists mainly of keratinocytes which proliferate in its basal layer and then differentiate to form the stratum corneum, the skin's ultimate barrier to the environment. During differentiation keratinocyte function, chemical composition, physical properties, metabolism and secretion are profoundly changed. Extrinsic or intrinsic stressors, like ultraviolet (UV) radiation thus may differently affect the epidermal keratinocytes, depending on differentiation stage. Exposure to UV elicits the DNA damage responses, activation of pathways which detoxify or repair damage or induction of programmed cell death when the damage was irreparable. Recently, rapid diversion of glucose flux into the pentose phosphate pathway (PPP) was discovered as additional mechanism by which cells rapidly generate reduction equivalents and precursors for nucleotides - both being in demand after UV damage. There is however little known about the correlation of such metabolic activity with differentiation state, cell damage and tissue localization of epidermal cells. We developed a method to correlate the activity of G6PD, the first and rate-limiting enzyme of this metabolic UV response, at cellular resolution to cell type, differentiation state, and cell damage in human skin and in organotypic reconstructed epidermis. We thereby could verify rapid activation of G6PD as an immediate UVB response not only in basal but also in differentiating epidermal keratinocytes and found increased activity in cells which initiated DNA damage responses. When keratinocytes had been UVB irradiated before organotypic culture, their distribution within the skin equivalent was abnormal and the G6PD activity was reduced compared to neighboring cells. Finally, we found that the anti-diabetic and potential anti-aging drug metformin strongly induced G6PD activity throughout reconstructed epidermis. Activation of the protective pentose phosphate pathway may be useful to enhance the skin's antioxidant defense systems and DNA damage repair capacity on demand.


Asunto(s)
Estrés Oxidativo , Preparaciones Farmacéuticas , Piel , Rayos Ultravioleta , Adulto , Diferenciación Celular , Células Cultivadas , Humanos , Queratinocitos , Preparaciones Farmacéuticas/metabolismo , Piel/metabolismo , Rayos Ultravioleta/efectos adversos
9.
Front Aging Neurosci ; 12: 611572, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488384

RESUMEN

Cognitive processes require striatal activity. The underlying molecular mechanisms are widely unknown. For this reason the striatal transcriptome of young (YM), aged cognitively impaired (OMB), and unimpaired (OMG) male rats was analyzed. The global comparison of transcripts reveal a higher number of differences between OMG and YM as compared to OMB and YM. Hierarchical clustering detects differences in up- and down-regulated gene clusters in OMG and OMB when compared to YM. In OMG we found more single genes to be specifically regulated in this group than in OMB when compared to young. These genes were considered as cognition specific, whereas genes shared in OMG and OMB were considered as age specific. OMB specific up-regulated genes are related to negative control of cell differentiation and transcription (Hopx), to phagocytosis (Cd202) and cell adhesion (Pcdhb21), whereas down-regulated genes are related to associative learning, behavioral fear response and synaptic transmission (Gabra5). OMG specific up-regulated genes are in the context of maintenance of transcription and estrogen receptor signaling (Padi2, Anxa3), signal transduction [Rassf4, Dock8)], sterol regulation (Srebf1), and complement activity (C4a, C4b). Down-regulated genes are related to lipid oxidation reduction processes (Far2) and positive regulation of axon extension (Islr2). These relations were supported by pathway analysis, which reveals cholesterol metabolism processes in both aged group and cholesterol biosynthesis specifically in OMG; adipogenesis and focal adhesion in OMB. In OMG glucuronidation, estrogen metabolism, inflammatory responses and TGF beta signaling where detected as specific for this group. Signal transduction of the sphingosine-1-phospate-receptor (S1P) receptor was the main pathway difference in the comparison of OMB and OMG with downregulated genes in the first group. This difference could also be observed in the OMB vs. YM comparison but not in the OMG vs. YM analysis. Thus, an up-regulation of cognition related genes could be observed in OMG compared to OMB rats. The S1P pathway discriminated between OMB and OMG as well as between OMB and OMG. Since this pathway has been described as essential for cognitive processes in the striatum of mice, it may, among steroid hormone signaling, significantly contribute to the maintenance of cognitive processes in OMG.

10.
Redox Biol ; 20: 467-482, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30466060

RESUMEN

Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Mass spectrometric analysis immediately or 24 h post UV stress revealed significant changes in abundance of 173 and 84 lipid species, respectively. We identified known and novel lipid species including known bioactive and also potentially reactive carbonyl containing species. We found indication for selective metabolism and degradation of selected reactive lipids. Exposure to both UVA and to in vitro UVA - oxidized phospholipids activated, on transcriptome and proteome level, NRF2/antioxidant response signaling, lipid metabolizing enzyme expression and unfolded protein response (UPR) signaling. We identified NUPR1 as an upstream regulator of UVA/OxPL transcriptional stress responses and found this protein to be expressed in the epidermis. Silencing of NUPR1 resulted in augmented expression of antioxidant and lipid detoxification genes and disturbed the cell cycle, making it a potential key factor in skin reactive oxygen species (ROS) responses intimately involved in aging and pathology.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Proteínas de Neoplasias/genética , Oxidación-Reducción/efectos de la radiación , Fosfolípidos/metabolismo , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Rayos Ultravioleta , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Metaboloma , Metabolómica/métodos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Transcriptoma
11.
Mol Neurobiol ; 55(11): 8425-8437, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29550918

RESUMEN

Defects in autophagy and the resulting deposition of protein aggregates have been implicated in aging and neurodegenerative diseases. While gene targeting in the mouse has facilitated the characterization of these processes in different types of neurons, potential roles of autophagy and accumulation of protein substrates in neuroepithelial cells have remained elusive. Here we report that Atg7f/f Tyr-Cre mice, in which autophagy-related 7 (Atg7) is conditionally deleted under the control of the tyrosinase promoter, are a model for accumulations of the autophagy adapter and substrate sequestosome-1/p62 in both neuronal and neuroepithelial cells. In the brain of Atg7f/f Tyr-Cre but not of fully autophagy competent control mice, p62 aggregates were present in sporadic neurons in the cortex and other brain regions as well in epithelial cells of the choroid plexus and the ependyma. Western blot analysis confirmed a dramatic increase of p62 abundance and formation of high-molecular weight species of p62 in the brain of Atg7f/f Tyr-Cre mice relative to Atg7f/f controls. Immuno-electron microscopy showed that p62 formed filamentous aggregates in neurons and ependymal cells. p62 aggregates were also highly abundant in the ciliary body in the eye. Atg7f/f Tyr-Cre mice reached an age of more than 2 years although neurological defects manifesting in abnormal hindlimb clasping reflexes were evident in old mice. These results show that p62 filaments form in response to impaired autophagy in vivo and suggest that Atg7f/f Tyr-Cre mice are a model useful to study the long-term effects of autophagy deficiency on the homeostasis of different neuroectoderm-derived cells.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/genética , Autofagia/genética , Encéfalo/patología , Eliminación de Gen , Células Neuroepiteliales/metabolismo , Neuronas/metabolismo , Agregado de Proteínas , Proteína Sequestosoma-1/metabolismo , Animales , Cuerpo Ciliar/metabolismo , Epéndimo/metabolismo , Epéndimo/patología , Femenino , Integrasas/metabolismo , Ratones , Células Neuroepiteliales/ultraestructura , Neuronas/patología , Neuronas/ultraestructura , Fosfolípidos/metabolismo , Ubiquitina/metabolismo
12.
Mech Ageing Dev ; 172: 35-44, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29103984

RESUMEN

Phospholipid oxidation products (OxPL) are versatile stress signaling mediators in the skin. These lipid signaling molecules can be generated non-enzymatically or enzymatically by ultraviolet light, the major extrinsic skin aging factor. OxPL regulate cytoprotective, immunological and metabolic adaptation of the skin to oxidant stress. We here investigated whether the scavenger receptor Oxidized Low Density Lipoprotein Receptor 1 (OLR1, LOX-1) would have a function in cutaneous oxPL signaling. We found, that OLR1 is expressed in several cutaneous cell types, most prominently in cells of the sebaceous gland and in keratinocytes. We repressed OLR1 expression with siRNA in SZ95 sebocytes, exposed cells to oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and performed transcriptomic profiling. Bioinformatic analysis revealed that OxPL exposure induced the Nrf2 antioxidant stress response and aldosterone signaling. The analysis also revealed that OLR1 is not required for the transcriptional regulation induced by oxidized PAPC but interestingly, OLR1 knockdown affected expression of CNN2, HMRR, ITGB6 and KIF20A, all genes governing cell proliferation and motility. We identify sebocytes as cutaneous cells responsive to lipid mediated redox stress which is not dependent on the scavenger receptor OLR1.


Asunto(s)
Regulación de la Expresión Génica , Mitosis , Receptores Depuradores de Clase E/deficiencia , Piel/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Oxidación-Reducción/efectos de los fármacos , Fosfatidilcolinas/farmacología , Piel/patología
13.
Redox Biol ; 11: 219-230, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28012437

RESUMEN

Autophagy allows cells fundamental adaptations to metabolic needs and to stress. Using autophagic bulk degradation cells can clear crosslinked macromolecules and damaged organelles that arise under redox stress. Accumulation of such debris results in cellular dysfunction and is observed in aged tissue and senescent cells. Conversely, promising anti-aging strategies aim at inhibiting the mTOR pathway and thereby activating autophagy, to counteract aging associated damage. We have inactivated autophagy related 7 (Atg7), an essential autophagy gene, in murine keratinocytes (KC) and have found in an earlier study that this resulted in increased baseline oxidative stress and reduced capacity to degrade crosslinked proteins after oxidative ultraviolet stress. To investigate whether autophagy deficiency would promote cellular aging, we studied how Atg7 deficient (KO) and Atg7 bearing cells (WT) would respond to stress induced by paraquat (PQ), an oxidant drug commonly used to induce cellular senescence. Atg7 deficient KC displayed increased prostanoid signaling and a pro- mitotic gene expression signature as compared to the WT. After exposure to PQ, both WT and KO cells showed an inflammatory and stress-related transcriptomic response. However, the Atg7 deficient cells additionally showed drastic DNA damage- and cell cycle arrest signaling. Indeed, DNA fragmentation and -oxidation were strongly increased in the stressed Atg7 deficient cells upon PQ stress but also after oxidizing ultraviolet A irradiation. Damage associated phosphorylated histone H2AX (γH2AX) foci were increased in the nuclei, whereas expression of the nuclear lamina protein lamin B1 was strongly decreased. Similarly, in both, PQ treated mouse tail skin explants and in UVA irradiated mouse tail skin, we found a strong increase in γH2AX positive nuclei within the basal layer of Atg7 deficient epidermis. Atg7 deficiency significantly affected expression of lipid metabolic genes. Therefore we performed lipid profiling of keratinocytes which demonstrated a major dysregulation of cellular lipid metabolism. We found accumulation of autophagy agonisitic free fatty acids, whereas triglyceride levels were strongly decreased. Together, our data show that in absence of Atg7/autophagy the resistance of keratinocytes to intrinsic and environmental oxidative stress was severely impaired and resulted in DNA damage, cell cycle arrest and a disturbed lipid phenotype, all typical for premature cell aging.


Asunto(s)
Autofagia/genética , Epidermis/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Queratinocitos/metabolismo , Estrés Oxidativo/genética , Triglicéridos/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/efectos de la radiación , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Senescencia Celular/efectos de la radiación , Daño del ADN , Epidermis/efectos de los fármacos , Epidermis/patología , Epidermis/efectos de la radiación , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de la radiación , Ratones , Ratones Noqueados , Paraquat/farmacología , Transducción de Señal , Rayos Ultravioleta
14.
Int J Biochem Cell Biol ; 81(Pt B): 375-382, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27732890

RESUMEN

Autophagy is a recycling program which allows cells to adapt to metabolic needs and to stress. Defects in autophagy can affect metabolism, aging, proteostasis and inflammation. Autophagy pathway genes, including autophagy related 7 (Atg7), have been associated with the regulation of skin pigmentation, and autophagy defects disturb the biogenesis and transport of melanosomes in melanocytes as well as transfer and processing of melanin into keratinocytes. We have previously shown that mice whose melanocytes or keratinocytes lack Atg7 (and thus autophagy) as a result of specific gene knockout still retained functioning melanosome synthesis and transfer, and displayed only moderate reduction of pigmentation. In cell culture the Atg7 deficient melanocytes were prone to premature senescence and dysregulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling. To elucidate the biochemical basis of this phenotype, we performed a study on global gene expression, protein secretion and phospholipid composition in Atg7 deficient versus Atg7 expressing melanocytes. In cell culture Atg7 deficient melanocytes showed a pro-inflammatory gene expression signature and secreted higher levels of C-X-C motif chemokine ligand -1,-2,-10 and -12 (Cxcl1, Cxcl2, Cxcl10, Cxcl12), which are implicated in the pathogenesis of pigmentary disorders and expressed higher amounts of matrix metalloproteinases -3 and -13 (Mmp3, Mmp13). The analysis of membrane phospholipid composition identified an increase in the arachidonic- to linoleic acid ratio in the autophagy deficient cells, as well as an increase in oxidized phospholipid species that act as danger associated molecular patterns (DAMPs). The secretion of inflammation related factors suggests that autophagy deficient melanocytes display a senescence associated secretory phenotype (SASP), and we propose oxidized lipid mediators as novel components of this SASP.


Asunto(s)
Envejecimiento , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Metabolismo de los Lípidos , Melanocitos/citología , Melanocitos/metabolismo , Animales , Autofagia/genética , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Lípidos/química , Ratones , Fenotipo , Reacción en Cadena de la Polimerasa
15.
PLoS One ; 11(8): e0161640, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27537685

RESUMEN

Targeted gene knockout mouse models have helped to identify roles of autophagy in many tissues. Here, we investigated the retinal pigment epithelium (RPE) of Atg7f/f Tyr-Cre mice (on a C57BL/6 background), in which Cre recombinase is expressed under the control of the tyrosinase promoter to delete the autophagy gene Atg7. In line with pigment cell-directed blockade of autophagy, the RPE and the melanocytes of the choroid showed strong accumulation of the autophagy adaptor and substrate, sequestosome 1 (Sqstm1)/p62, relative to the levels in control mice. Immunofluorescence and Western blot analysis demonstrated that the RPE, but not the choroid melanocytes, of Atg7f/f Tyr-Cre mice also had strongly increased levels of retinoid isomerohydrolase RPE65, a pivotal enzyme for the maintenance of visual perception. In contrast to Sqstm1, genes involved in retinal regeneration, i.e. Lrat, Rdh5, Rgr, and Rpe65, were expressed at higher mRNA levels. Sequencing of the Rpe65 gene showed that Atg7f/f and Atg7f/f Tyr-Cre mice carry a point mutation (L450M) that is characteristic for the C57BL/6 mouse strain and reportedly causes enhanced degradation of the RPE65 protein by an as-yet unknown mechanism. These results suggest that the increased abundance of RPE65 M450 in the RPE of Atg7f/f Tyr-Cre mice is, at least partly, mediated by upregulation of Rpe65 transcription; however, our data are also compatible with the hypothesis that the RPE65 M450 protein is degraded by Atg7-dependent autophagy in Atg7f/f mice. Further studies in mice of different genetic backgrounds are necessary to determine the relative contributions of these mechanisms.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/fisiología , Epitelio Pigmentado de la Retina/metabolismo , cis-trans-Isomerasas/metabolismo , Animales , Autofagia/genética , Autofagia/fisiología , Proteína 7 Relacionada con la Autofagia/genética , Western Blotting , Femenino , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monofenol Monooxigenasa/metabolismo
16.
Free Radic Biol Med ; 88(Pt B): 439-451, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25981373

RESUMEN

Fish oil rich in docosahexaenoic acid (DHA) has beneficial effects on human health. Omega-3 polyunsaturated fatty acids are precursors of eicosanoids and docosanoids, signaling molecules that control inflammation and immunity, and their dietary uptake improves a range of disorders including cardiovascular diseases, ulcerative colitis, rheumatoid arthritis, and psoriasis. The unsaturated nature of these fatty acids, however, makes them prone to oxidation, especially when they are incorporated into (membrane) phospholipids. The skin is an organ strongly exposed to oxidative stress, mainly due to solar ultraviolet radiation. Thus, increased levels of PUFA in combination with oxidative stress could cause increased local generation of oxidized lipids, whose action spectrum reaches from signaling molecules to reactive carbonyl compounds that can crosslink biomolecules. Here, we investigated whether PUFA supplements to fibroblasts are incorporated into membrane phospholipids and whether an increase of PUFA within phospholipids affects the responses of the cells to UV exposure. The redox-sensitive transcription factor Nrf2 is the major regulator of the fibroblast stress response to ultraviolet radiation or exposure to oxidized lipids. Here we addressed how Nrf2 signaling would be affected in PUFA-supplemented human dermal fibroblasts and mouse dermal fibroblasts from Nrf2-deficient and wild type mice. We found, using HPLC-tandem MS, that DHA supplements to culture media of human and murine fibroblasts were readily incorporated into phospholipids and that subsequent irradiation of the supplemented cells with UVA resulted in an increase in 1-palmitoyl-2-(epoxyisoprostane-E2)-sn-glycero-3-phosphorylcholine and Oxo-DHA esterified to phospholipid, both of which are Nrf2 agonists. Also, induction of Nrf2 target genes was enhanced in the DHA-supplemented fibroblasts after UVA irradiation. In Nrf2-deficient murine fibroblasts, the expression of the target genes was, as expected, decreased, but surprisingly, expression of TNFα and MMP13 was strongly induced in DHA-supplemented, UVA-irradiated cells. Also, Nrf2-deficient cells had increased levels of oxidized phospholipids relative to the unoxidized precursors after UVA irradiation. Our data suggest that under ultraviolet stress a functioning Nrf2 system is required to prevent DHA-induced inflammation and matrix degradation in dermal fibroblasts.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Inflamación/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Fibroblastos/metabolismo , Humanos , Técnicas para Inmunoenzimas , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Peroxidación de Lípido/efectos de la radiación , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/efectos de los fármacos , Piel/metabolismo , Piel/efectos de la radiación , Espectrometría de Masas en Tándem , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA