Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Res Notes ; 16(1): 46, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024962

RESUMEN

OBJECTIVE: A centrifugation-assisted peptide-mediated gene transfer (CAPT) method was recently developed as an efficient system for gene delivery into plant cells. However, the gene transfer efficiency of CAPT into plant cells was not entirely satisfactory for detecting transient expression of a transgene driven into mitochondria. Here, we report a new gene delivery system using a method called particle bombardment-assisted peptide-mediated gene transfer (PBPT). RESULTS: We investigated various parameters of the PBPT method to increase transient gene expression efficiency in Brassica campestris. The optimal conditions for PBPT were a single bombardment with gold particles coated with a DNA‒peptide complex (6 µg of DNA and 2 µg of peptide) at an acceleration pressure of 5 kg/cm2 and a target distance of 12.5 cm. Moreover, bombardment under the optimal conditions successfully transferred the transgene into the cells of other plant species, namely B. juncea and tomato. Thus, we developed a PBPT method for highly efficient delivery of a DNA‒peptide complex into plant mitochondria.


Asunto(s)
ADN , Técnicas de Transferencia de Gen , Transformación Genética , ADN/genética , ADN/metabolismo , Plantas , Péptidos/genética
2.
Plant Biotechnol (Tokyo) ; 40(3): 211-218, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38420569

RESUMEN

Genome editing is highly useful for crop improvement. The method of expressing genome-editing enzymes using a transient expression system in Agrobacterium, called agrobacterial mutagenesis, is a shortcut used in genome-editing technology to improve elite varieties of vegetatively propagated crops, including potato. However, with this method, edited individuals cannot be selected. The transient expression of regeneration-promoting genes can result in shoot regeneration from plantlets, while the constitutive expression of most regeneration-promoting genes does not result in normally regenerated shoots. Here, we report that we could obtain genome-edited potatoes by positive selection. These regenerated shoots were obtained via a method that combined a regeneration-promoting gene with the transient expression of a genome-editing enzyme gene. Moreover, we confirmed that the genome-edited potatoes obtained using this method did not contain the sequence of the binary vector used in Agrobacterium. Our data have been submitted to the Japanese regulatory authority, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and we are in the process of conducting field tests for further research on these potatoes. Our work presents a powerful method for regarding regeneration and acquisition of genome-edited crops through transient expression of regeneration-promoting gene.

4.
Front Plant Sci ; 12: 648841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790930

RESUMEN

Limitations for the application of genome editing technologies on elite wheat (Triticum aestivum L.) varieties are mainly due to the dependency on in vitro culture and regeneration capabilities. Recently, we developed an in planta particle bombardment (iPB) method which has increased process efficiency since no culture steps are required to create stably genome-edited wheat plants. Here, we report the application of the iPB method to commercially relevant Japanese elite wheat varieties. The biolistic delivery of gold particles coated with plasmids expressing CRISPR/Cas9 components designed to target TaQsd1 were bombarded into the embryos of imbibed seeds with their shoot apical meristem (SAM) exposed. Mutations in the target gene were subsequently analyzed within flag leaf tissue by using cleaved amplified polymorphic sequence (CAPS) analysis. A total of 9/358 (2.51%) of the bombarded plants (cv. "Haruyokoi," spring type) carried mutant alleles in the tissue. Due to the chimeric nature of the T0 plants, only six of them were inherited to the next (T1) generation. Genotypic analysis of the T2 plants revealed a single triple-recessive homozygous mutant of the TaQsd1 gene. Compared to wild type, the homozygous mutant exhibited a 7 days delay in the time required for 50% seed germination. The iPB method was also applied to two elite winter cultivars, "Yumechikara" and "Kitanokaori," which resulted in successful genome editing at slightly lower efficiencies as compared to "Haruyokoi." Taken together, this report demonstrates that the in planta genome editing method through SAM bombardment can be applicable to elite wheat varieties that are otherwise reluctant to callus culture.

5.
Plant Biotechnol (Tokyo) ; 37(2): 171-176, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32821224

RESUMEN

Transformation is a key step in modern breeding technology that involves genome editing. The requirement for in vitro tissue culture and regeneration hampers application of this technology to commercially important varieties of many crop species. To overcome this problem, we developed a simple and reproducible in planta transformation method in wheat (Tritticum aestivum L.). Our in planta particle bombardment (iPB) method utilizes the shoot apical meristem (SAM) as a target tissue. The SAM contains a subepidermal cell layer termed L2, from which germ cells later develop during floral organogenesis. The iPB method can also be used for genome editing through transient CRISPR/Cas9 expression or direct delivery of the CRISPR/Cas9 ribonucleoprotein. In this review, we describe the iPB technology and provide an overview of its current and future applications in plant transformation and genome editing.

6.
Sci Rep ; 8(1): 14422, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30258105

RESUMEN

The current application of genome editing to crop plants is limited to cultivars that are amenable to in vitro culture and regeneration. Here, we report an in planta genome-editing which does not require callus culture and regeneration. Shoot apical meristems (SAMs) contain a subepidermal cell layer, L2, from which germ cells later develop during floral organogenesis. The biolistic delivery of gold particles coated with plasmids expressing CRISPR/Cas9 components designed to target TaGASR7 were bombarded into SAM-exposed embryos of imbibed seeds. Bombarded embryos showing transient GFP expression within SAM were selected and grown into adult plants. Mutations in the target gene were assessed in fifth-leaf tissue by cleaved amplified polymorphic sequence analysis. Eleven (5.2%) of the 210 bombarded plants carried mutant alleles, and the mutations of three (1.4%) of these were inherited in the next generation. Genotype analysis of T1 plants identified plants homozygous for the three homeologous genes, which were all derived from one T0 plant. These plants showed no detectable integration of the Cas9 and guide RNA genes, indicating that transient expression of CRISPR/Cas9 introduced the mutations. Together, our current method can be used to achieve in planta genome editing in wheat using CRISPR/Cas9 and suggests possible applications to other recalcitrant plant species and variations.


Asunto(s)
Biolística/métodos , Sistemas CRISPR-Cas , Edición Génica/métodos , Triticum/genética , Meristema/genética , Mutagénesis , Mutación , Plantas Modificadas Genéticamente/genética , ARN Guía de Kinetoplastida/genética
7.
Sci Rep ; 7(1): 17573, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29230048

RESUMEN

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

8.
Sci Rep ; 7(1): 11443, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28904403

RESUMEN

The currently favoured method for wheat (Triticum aestivum L.) transformation is inapplicable to many elite cultivars because it requires callus culture and regeneration. Here, we developed a simple, reproducible, in planta wheat transformation method using biolistic DNA delivery without callus culture or regeneration. Shoot apical meristems (SAMs) grown from dry imbibed seeds were exposed under a microscope and subjected to bombardment with different-sized gold particles coated with the GFP gene construct, introducing DNA into the L2 cell layer. Bombarded embryos were grown to mature, stably transformed T0 plants and integration of the GFP gene into the genome was determined at the fifth leaf. Use of 0.6-µm particles and 1350-psi pressure resulted in dramatically increased maximum ratios of transient GFP expression in SAMs and transgene integration in the fifth leaf. The transgene was integrated into the germ cells of 62% of transformants, and was therefore inherited in the next generation. We successfully transformed the model wheat cultivar 'Fielder', as well as the recalcitrant Japanese elite cultivar 'Haruyokoi'. Our method could potentially be used to generate stable transgenic lines for a wide range of commercial wheat cultivars.


Asunto(s)
Biolística , Transformación Genética , Triticum/genética , Biolística/métodos , Expresión Génica , Técnicas de Transferencia de Gen , Genes Reporteros , Genotipo , Meristema/genética , Plantas Modificadas Genéticamente , Plásmidos/genética , Semillas/genética , Transgenes
9.
J Plant Res ; 119(3): 217-30, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16602030

RESUMEN

Anthocyanin synthesis and chlorophyll degradation in regenerated torenia (Torenia fournieri Linden ex Fourn.) shoots induced by osmotic stress with 7% sucrose were examined to identify the genes regulating the underlying molecular mechanism. To achieve this, suppression subtractive hybridization was performed to enrich the cDNAs of genes induced in anthocyanin-synthesizing and chlorophyll-degrading regenerated shoots. The nucleotide sequences of 1,388 random cDNAs were determined, and these were used in the preparation of cDNA microarrays for high-throughput screening. From 1,056 cDNAs analyzed in the microarrays, 116 nonredundant genes were identified, which were up regulated by 7% sucrose to induce anthocyanin synthesis and chlorophyll degradation in regenerated shoots. Of these, eight genes were selected and RNAi transformants prepared, six of which exhibited anthocyanin synthesis inhibition and/or chlorophyll degradation in their leaf discs. Notably, the RNAi transformants of the glucose 6-phosphate/phosphate translocator gene displayed inhibition both of anthocyanin synthesis and chlorophyll degradation in both leaf discs and regenerated shoots. There was also less accumulation of anthocyanin in the petals, and flowering time was shortened. The genes we identified as being up-regulated in the regenerated torenia shoots may help further elucidate the molecular mechanism underlying the induction of anthocyanin synthesis and chlorophyll degradation.


Asunto(s)
Antocianinas/biosíntesis , Clorofila/metabolismo , Lamiaceae/genética , Lamiaceae/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Brotes de la Planta/metabolismo , Interferencia de ARN , ADN Complementario/genética , Flores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Fenotipo , Hojas de la Planta/metabolismo , Brotes de la Planta/genética
10.
J Plant Res ; 119(2): 137-44, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16465453

RESUMEN

To elucidate the mechanism of anthocyanin synthesis induction concomitant with chlorophyll degradation, we established a system in which anthocyanin synthesis and degradation of chlorophyll in regenerated torenia (Torenia fournieri) shoots was induced on medium containing 7% sucrose. Here, we studied the effect of several plant-growth regulators on anthocyanin synthesis and the degradation of chlorophyll in the torenia shoot regenerating system. Exogenous abscisic acid (ABA) could induce anthocyanin synthesis and chlorophyll senescence in regenerating torenia shoots on the medium containing a low concentration of sucrose (1.5%). We determined the changes in the amount of endogenous ABA in the regenerated shoots during the process of anthocyanin synthesis on the medium containing 7% sucrose. It was revealed that the 7% sucrose treatment elevated endogenous ABA levels before the induction of anthocyanin synthesis and chlorophyll degradation. However, while retransfer to the 1.5% sucrose medium resulted in a gradual decrease in the ABA level and a failure of induction of anthocyanin synthesis, normal shoot regeneration. These results suggest that changes in the amount of endogenous ABA may play an important role in the induction of anthocyanin synthesis and chlorophyll degradation in regenerated torenia shoots.


Asunto(s)
Ácido Abscísico/fisiología , Antocianinas/biosíntesis , Reguladores del Crecimiento de las Plantas/fisiología , Brotes de la Planta/metabolismo , Scrophulariaceae/fisiología , Ácido Abscísico/farmacología , Clorofila/metabolismo , Medios de Cultivo , Reguladores del Crecimiento de las Plantas/farmacología , Sacarosa
11.
J Plant Res ; 117(5): 377-83, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15338427

RESUMEN

A system in which anthocyanin synthesis can be induced under defined conditions was established in regenerated torenia shoots. Leaf discs prepared from torenia plantlets grown under sterile conditions were placed on solidified half-strength MS medium containing 3% sucrose and 4.4x10(-6) M benzyladenine (BA) and cultured under 16 h light/8 h dark (standard light) conditions for 10 days, then in the dark for a further 10 days. The discs were transferred to medium containing 7% sucrose without BA and cultured under standard light conditions. Six days after transfer, anthocyanin synthesis started in the regenerated shoots, and thereafter, anthocyanin accumulation increased while chlorophyll content decreased. Experiments in which either the timing of illumination was altered or shoots were retransferred to medium containing 1.5% sucrose or other sugars as well as sucrose indicated that both osmotic stress and light are required to induce anthocyanin synthesis. Once anthocyanin synthesis was induced in the torenia shoots 6 days after transfer, the shoots were fated to the synthesis of anthocyanins and the degradation of chlorophylls, and could not revert to the developmental pathway of shoot regeneration. This system may provide a good model for the investigation of the mechanisms underlying the induction of anthocyanin synthesis.


Asunto(s)
Antocianinas/biosíntesis , Lamiaceae/fisiología , Brotes de la Planta/fisiología , Regeneración/fisiología , Técnicas de Cultivo de Célula/métodos , Clorofila/metabolismo , Lamiaceae/crecimiento & desarrollo , Hojas de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...