Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Genomics ; 55(4): 179-193, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36912534

RESUMEN

The endothelium contains morphologically similar cells throughout the vasculature, but individual cells along the length of a single vascular tree or in different regional circulations function dissimilarly. When observations made in large arteries are extrapolated to explain the function of endothelial cells (ECs) in the resistance vasculature, only a fraction of these observations are consistent between artery sizes. To what extent endothelial (EC) and vascular smooth muscle cells (VSMCs) from different arteriolar segments of the same tissue differ phenotypically at the single-cell level remains unknown. Therefore, single-cell RNA-seq (10x Genomics) was performed using a 10X Genomics Chromium system. Cells were enzymatically digested from large (>300 µm) and small (<150 µm) mesenteric arteries from nine adult male Sprague-Dawley rats, pooled to create six samples (3 rats/sample, 3 samples/group). After normalized integration, the dataset was scaled before unsupervised cell clustering and cluster visualization using UMAP plots. Differential gene expression analysis allowed us to infer the biological identity of different clusters. Our analysis revealed 630 and 641 differentially expressed genes (DEGs) between conduit and resistance arteries for ECs and VSMCs, respectively. Gene ontology analysis (GO-Biological Processes, GOBP) of scRNA-seq data discovered 562 and 270 pathways for ECs and VSMCs, respectively, that differed between large and small arteries. We identified eight and seven unique ECs and VSMCs subpopulations, respectively, with DEGs and pathways identified for each cluster. These results and this dataset allow the discovery and support of novel hypotheses needed to identify mechanisms that determine the phenotypic heterogeneity between conduit and resistance arteries.


Asunto(s)
Células Endoteliales , Transcriptoma , Ratas , Animales , Transcriptoma/genética , Células Endoteliales/metabolismo , Ratas Sprague-Dawley , Endotelio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Arterias Mesentéricas , Perfilación de la Expresión Génica
2.
J Gen Physiol ; 155(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36484717

RESUMEN

Acid-sensing ion channel 1a (ASIC1a) belongs to a novel family of proton-gated cation channels that are permeable to both Na+ and Ca2+. ASIC1a is expressed in vascular smooth muscle and endothelial cells in a variety of vascular beds, yet little is known regarding the potential impact of ASIC1a to regulate local vascular reactivity. Our previous studies in rat mesenteric arteries suggest ASIC1a does not contribute to agonist-induced vasoconstriction but may mediate a vasodilatory response. The objective of the current study is to determine the role of ASIC1a in systemic vasodilatory responses by testing the hypothesis that the activation of endothelial ASIC1a mediates vasodilation of mesenteric resistance arteries through an endothelium-dependent hyperpolarization (EDH)-related pathway. The selective ASIC1a antagonist psalmotoxin 1 (PcTX1) largely attenuated the sustained vasodilatory response to acetylcholine (ACh) in isolated, pressurized mesenteric resistance arteries and ACh-mediated Ca2+ influx in freshly isolated mesenteric endothelial tubes. Similarly, basal tone was enhanced and ACh-induced vasodilation blunted in mesenteric arteries from Asic1a knockout mice. ASIC1a colocalizes with intermediate- and small-conductance Ca2+-activated K+ channels (IKCa and SKCa, respectively), and the IKCa/SKCa-sensitive component of the ACh-mediated vasodilation was blocked by ASIC1a inhibition. To determine the role of ASIC1a to activate IKCa/SKCa channels, we measured whole-cell K+ currents using the perforated-patch clamp technique in freshly isolated mesenteric endothelial cells. Inhibition of ASIC1a prevented ACh-induced activation of IKCa/SKCa channels. The ASIC1 agonist, α/ß-MitTx, activated IKCa/SKCa channels and induced an IKCa/SKCa-dependent vasodilation. Together, the present study demonstrates that ASIC1a couples to IKCa/SKCa channels in mesenteric resistance arteries to mediate endothelium-dependent vasodilation.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Endotelio Vascular , Canales de Potasio Calcio-Activados , Vasodilatación , Animales , Ratones , Ratas , Acetilcolina/metabolismo , Canales Iónicos Sensibles al Ácido/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Arterias Mesentéricas/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Vasodilatación/genética , Vasodilatación/fisiología
3.
Antioxidants (Basel) ; 11(9)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36139754

RESUMEN

H2S is a gaseous signaling molecule enzymatically produced in mammals and H2S-producing enzymes are expressed throughout the vascular wall. We previously reported that H2S-induced vasodilation is mediated through transient receptor potential cation channel subfamily V member 4 (TRPV4) and large conductance (BKCa) potassium channels; however, regulators of this pathway have not been defined. Previous reports have shown that membrane cholesterol limits activity of TRPV4 and BKCa potassium channels. The current study examined the ability of endothelial cell (EC) plasma membrane (PM) cholesterol to regulate H2S-induced vasodilation. We hypothesized that EC PM cholesterol hinders H2S-mediated vasodilation in large mesenteric arteries. In pressurized, U46619 pre-constricted mesenteric arteries, decreasing EC PM cholesterol in large arteries using methyl-ß-cyclodextrin (MBCD, 100 µM) increased H2S-induced dilation (NaHS 10, 100 µM) but MBCD treatment had no effect in small arteries. Enface fluorescence showed EC PM cholesterol content is higher in large mesenteric arteries than in smaller arteries. The NaHS-induced vasodilation following MBCD treatment in large arteries was blocked by TRPV4 and BKCa channel inhibitors (GSK219384A, 300 nM and iberiotoxin, 100 nM, respectively). Immunohistochemistry of mesenteric artery cross-sections show that TRPV4 and BKCa are both present in EC of large and small arteries. Cholesterol supplementation into EC PM of small arteries abolished NaHS-induced vasodilation but the cholesterol enantiomer, epicholesterol, had no effect. Proximity ligation assay studies did not show a correlation between EC PM cholesterol content and the association of TRPV4 and BK. Collectively, these results demonstrate that EC PM cholesterol limits H2S-induced vasodilation through effects on EC TRPV4 and BKCa channels.

4.
Microcirculation ; 29(4-5): e12774, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35689491

RESUMEN

OBJECTIVE: Our previous work demonstrated that endothelial cell (EC) membrane cholesterol is reduced following 48 h of chronic hypoxia (CH). CH couples endothelial transient receptor potential subfamily V member 4 (TRPV4) channels to muscarinic receptor signaling through an endothelium-dependent hyperpolarization (EDH) pathway does not present in control animals. TRVPV4 channel activity has been shown to be regulated by membrane cholesterol. Hence, we hypothesize that acute manipulation of endothelial cell membrane cholesterol inversely determines the contribution of TRPV4 channels to endothelium-dependent vasodilation. METHODS: Male Sprague-Dawley rats were exposed to ambient atmospheric (atm.) pressure or 48-h of hypoxia (0.5 atm). Vasodilation to acetylcholine (ACh) was determined using pressure myography in gracilis arteries. EC membrane cholesterol was depleted using methyl-ß-cyclodextrin (MßCD) and supplemented with MßCD-cholesterol. RESULTS: Inhibiting TRPV4 did not affect ACh-induced vasodilation in normoxic controls. However, TRPV4 inhibition reduced resting diameter in control arteries suggesting basal activity. TRPV4 contributes to ACh-induced vasodilation in these arteries when EC membrane cholesterol is depleted. Inhibiting TRPV4 attenuated ACh-induced vasodilation in arteries from CH animals that exhibit lower EC membrane cholesterol than normoxic controls. EC cholesterol repletion in arteries from CH animals abolished the contribution of TRPV4 to ACh-induced vasodilation. CONCLUSION: Endothelial cell membrane cholesterol impedes the contribution of TRPV4 channels in EDH-mediated dilation. These results provide additional evidence for the importance of plasma membrane cholesterol content in regulating intracellular signaling and vascular function.


Asunto(s)
Canales Catiónicos TRPV , Vasodilatación , Acetilcolina/farmacología , Animales , Arterias/metabolismo , Membrana Celular/metabolismo , Colesterol , Células Endoteliales/metabolismo , Endotelio Vascular , Hipoxia , Masculino , Arterias Mesentéricas/metabolismo , Ratas , Ratas Sprague-Dawley
5.
J Physiol ; 599(21): 4749-4762, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34487355

RESUMEN

Pulmonary hypertension is characterized by sustained vasoconstriction and remodelling of the small pulmonary arteries, which is associated with persistent depolarization of the resting membrane potential (Em ) of pulmonary arterial smooth muscle cells (PASMCs). It is well-known that the underlying mechanism of this depolarization includes inhibition of K+ channels; however, whether other ion channels contribute to this depolarization is unknown. We previously reported that acid-sensing ion channel 1 (ASIC1), a non-selective cation channel (NSCC) that conducts both Na+ and Ca2+ , is present in PASMCs and contributes to the development of chronic hypoxia (CH)-induced pulmonary hypertension. Therefore, we tested the hypothesis that ASIC1-mediated Na+ influx contributes to PASMC Em regulation following CH-induced pulmonary hypertension. Using sharp electrode intracellular recordings in isolated, pressurized small pulmonary arteries from rats and mice, we show that exposure to CH leads to PASMC membrane depolarization compared with control animals, and this is independent of intraluminal pressure-induced depolarization. In addition to a decrease in PASMC whole-cell K+ currents following CH, we demonstrate that whole-cell NSCC currents are increased and essential to the persistent CH-induced Em depolarization in PASMCs. Both the specific inhibitor of ASIC1, psalmotoxin 1, and global knockout of ASIC1 (Asic1-/- ) prevents CH-induced Em depolarization and largely inhibits whole-cell NSCC currents, without affecting whole-cell K+ currents. Our results show a combination of factors, including inhibition of K+ efflux and augmented Na+ influx, mediate CH-induced PASMC depolarization. Furthermore, this study demonstrates a novel role for ASIC1 in the regulation of Em in PASMCs during CH-induced pulmonary hypertension. KEY POINTS: In pulmonary hypertensive patients and animal models of pulmonary hypertension, the resting membrane potential (Em ) of pulmonary arterial smooth muscle cells (PASMCs) is persistently depolarized. In addition to the well-established reduction of K+ conductance, we show that non-selective cation channel currents are increased and essential to the persistent Em depolarization in PASMCs following chronic hypoxia (CH)-induced pulmonary hypertension. The current study provides novel evidence that acid-sensing ion channel 1 (ASIC1)-mediated Na+ influx induces membrane depolarization and regulates Em in PASMCs following CH exposure. Although fairly quiescent under control conditions, our findings demonstrate a pathological function of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Canales Iónicos Sensibles al Ácido/genética , Animales , Calcio/metabolismo , Células Cultivadas , Humanos , Hipoxia , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Ratas
6.
Compr Physiol ; 11(4): 2467-2488, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34558672

RESUMEN

Hydrogen sulfide (H2 S) is a small, gaseous molecule with poor solubility in water that is generated by multiple pathways in many species including humans. It acts as a signaling molecule in many tissues with both beneficial and pathological effects. This article discusses its many actions in the vascular system and the growing evidence of its role to regulate vascular tone, angiogenesis, endothelial barrier function, redox, and inflammation. Alterations in some disease states are also discussed including potential roles in promoting tumor growth and contributions to the development of metabolic disease. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.


Asunto(s)
Sulfuro de Hidrógeno , Humanos , Inflamación , Neovascularización Patológica , Oxidación-Reducción , Transducción de Señal
7.
PeerJ ; 9: e11714, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34285833

RESUMEN

BACKGROUND: Diet-induced metabolic dysfunction precedes multiple disease states including diabetes, heart disease, and vascular dysfunction. The critical role of the vasculature in disease progression is established, yet the details of how gene expression changes in early cardiovascular disease remain an enigma. The objective of the current pilot project was to evaluate whether a quantitative assessment of gene expression within the aorta of six-week old healthy male Sprague-Dawley rats compared to those exhibiting symptoms of metabolic dysfunction could reveal potential mediators of vascular dysfunction. METHODS: RNA was extracted from the aorta of eight rats from a larger experiment; four animals fed a high-fat diet (HFD) known to induce symptoms of metabolic dysfunction (hypertension, increased adiposity, fasting hyperglycemia) and four age-matched healthy animals fed a standard chow diet (CHOW). The bioinformatic workflow included Gene Ontology (GO) biological process enrichment and network analyses. RESULTS: The resulting network contained genes relevant to physiological processes including fat and protein metabolism, oxygen transport, hormone regulation, vascular regulation, thermoregulation, and circadian rhythm. The majority of differentially regulated genes were downregulated, including several associated with circadian clock function. In contrast, leptin and 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) were notably upregulated. Leptin is involved in several major energy balance signaling pathways and Hmgcs2 is a mitochondrial enzyme that catalyzes the first reaction of ketogenesis. CONCLUSION: Together, these data describe changes in gene expression within the aortic wall of HFD rats with early metabolic dysfunction and highlight potential pathways and signaling intermediates that may impact the development of early vascular dysfunction.

8.
Am J Physiol Heart Circ Physiol ; 320(2): H511-H519, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33275519

RESUMEN

In sleep apnea, airway obstruction causes intermittent hypoxia (IH). In animal studies, IH-dependent hypertension is associated with loss of vasodilator hydrogen sulfide (H2S), and increased H2S activation of sympathetic nervous system (SNS) activity in the carotid body. We previously reported that inhibiting cystathionine γ-lyase (CSE) to prevent H2S synthesis augments vascular resistance in control rats. The goal of this study was to evaluate the contribution of IH-induced changes in CSE signaling to increased blood pressure and vascular resistance. We hypothesized that chronic IH exposure eliminates CSE regulation of blood pressure (BP) and vascular resistance. In rats instrumented with venous catheters, arterial telemeters, and flow probes on the main mesenteric artery, the CSE inhibitor dl-propargylglycine (PAG, 50 mg/kg/day i.v. for 5 days) increased BP in Sham rats but decreased BP in IH rats [in mmHg, Sham (n = 11): 114 ± 4 to 131 ± 6; IH (n = 8): 131 ± 8 to 115 ± 7 mmHg, P < 0.05]. PAG treatment increased mesenteric vascular resistance in Sham rats but decreased it in IH rats (day 5/day 1: Sham: 1.50 ± 0.07; IH: 0.85 ± 0.19, P < 0.05). Administration of the ganglionic blocker hexamethonium (to evaluate SNS activity) decreased mesenteric resistance in PAG-treated Sham rats more than in saline-treated Sham rats or PAG-treated IH rats. CSE immunoreactivity in IH carotid bodies compared with those from Sham rats. However, CSE staining in small mesenteric arteries was less in arteries from IH than in Sham rats but not different in larger arteries (inner diameter > 200 µm). These results suggest endogenous H2S regulates blood pressure and vascular resistance, but this control is lost after IH exposure with decreased CSE expression in resistance size arteries. IH exposure concurrently increases carotid body CSE expression and relative SNS control of blood pressure, suggesting both vascular and carotid body H2S generation contribute to blood pressure regulation.NEW & NOTEWORTHY These results suggest that CSE's protective role in the vasculature is impaired by simulated sleep apnea, which also upregulates CSE in the carotid body. Thus, this enzyme system can exert both pro- and antihypertensive effects and may contribute to elevated SNS outflow in sleep apnea.


Asunto(s)
Circulación Sanguínea , Presión Sanguínea , Gasotransmisores/metabolismo , Sulfuro de Hidrógeno/metabolismo , Síndromes de la Apnea del Sueño/metabolismo , Alquinos/farmacología , Animales , Antihipertensivos/farmacología , Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/metabolismo , Cuerpo Carotídeo/fisiopatología , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Gasotransmisores/sangre , Glicina/análogos & derivados , Glicina/farmacología , Hexametonio/farmacología , Sulfuro de Hidrógeno/sangre , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratas , Ratas Sprague-Dawley , Síndromes de la Apnea del Sueño/fisiopatología , Resistencia Vascular
9.
Am J Respir Cell Mol Biol ; 62(6): 709-718, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31945301

RESUMEN

Chronic hypoxia (CH) augments depolarization-induced pulmonary vasoconstriction through superoxide-dependent, Rho kinase-mediated Ca2+ sensitization. Nicotinamide adenine dinucleotide phosphate oxidase and EGFR (epidermal growth factor receptor) signaling contributes to this response. Caveolin-1 regulates the activity of a variety of proteins, including EGFR and nicotinamide adenine dinucleotide phosphate oxidase, and membrane cholesterol is an important regulator of caveolin-1 protein interactions. We hypothesized that derangement of these membrane lipid domain components augments depolarization-induced Ca2+ sensitization and resultant vasoconstriction after CH. Although exposure of rats to CH (4 wk, ∼380 mm Hg) did not alter caveolin-1 expression in intrapulmonary arteries or the incidence of caveolae in arterial smooth muscle, CH markedly reduced smooth muscle membrane cholesterol content as assessed by filipin fluorescence. Effects of CH on vasoreactivity and superoxide generation were examined using pressurized, Ca2+-permeabilized, endothelium-disrupted pulmonary arteries (∼150 µm inner diameter) from CH and control rats. Depolarizing concentrations of KCl evoked greater constriction in arteries from CH rats than in those obtained from control rats, and increased superoxide production as assessed by dihydroethidium fluorescence only in arteries from CH rats. Both cholesterol supplementation and the caveolin-1 scaffolding domain peptide antennapedia-Cav prevented these effects of CH, with each treatment restoring membrane cholesterol in CH arteries to control levels. Enhanced EGF-dependent vasoconstriction after CH similarly required reduced membrane cholesterol. However, these responses to CH were not associated with changes in EGFR expression or activity, suggesting that cholesterol regulates this signaling pathway downstream of EGFR. We conclude that alterations in membrane lipid domain signaling resulting from reduced cholesterol content facilitate enhanced depolarization- and EGF-induced pulmonary vasoconstriction after CH.


Asunto(s)
Calcio/fisiología , Caveolina 1/biosíntesis , Colesterol/fisiología , Hipoxia/fisiopatología , Lípidos de la Membrana/fisiología , Músculo Liso Vascular/metabolismo , Arteria Pulmonar/fisiopatología , Vasoconstricción/fisiología , Animales , Caveolina 1/genética , Enfermedad Crónica , Receptores ErbB/fisiología , Hipoxia/metabolismo , Masculino , Potenciales de la Membrana , Arteria Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Superóxidos/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 317(5): H1157-H1165, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31625777

RESUMEN

Hydrogen sulfide (H2S) dilates isolated arteries, and knockout of the H2S-synthesizing enzyme cystathionine γ-lyase (CSE) increases blood pressure. However, the contributions of endogenously produced H2S to blood flow regulation in specific vascular beds are unknown. Published studies in isolated arteries show that CSE production of H2S influences vascular tone more in small mesenteric arteries than in renal arteries or the aorta. Therefore, the goal of this study was to evaluate H2S regulation of blood pressure, vascular resistance, and regional blood flows using chronically instrumented rats. We hypothesized that during whole animal CSE inhibition, vascular resistance would increase more in the mesenteric than the renal circulation. Under anesthesia, CSE inhibition [ß-cyanoalanine (BCA), 30 mg/kg bolus + 5 mg·kg-1·min-1 for 20 min iv) rapidly increased mean arterial pressure (MAP) more than saline administration (%Δ: saline -1.4 ± 0.75 vs. BCA 7.1 ± 1.69, P < 0.05) but did not change resistance (MAP/flow) in either the mesenteric or renal circulation. In conscious rats, BCA infusion similarly increased MAP (%Δ: saline -0.8 ± 1.18 vs. BCA 8.2 ± 2.6, P < 0.05, n = 7) and significantly increased mesenteric resistance (saline 0.9 ± 3.1 vs. BCA 15.6 ± 6.5, P < 0.05, n = 12). The H2S donor Na2S (50 mg/kg) decreased blood pressure and mesenteric resistance ,but the fall in resistance was not significant. Inhibiting CSE for multiple days with dl-proparglycine (PAG, 50 mg·kg-1·min-1 iv bolus for 5 days) significantly increased vascular resistance in both mesenteric (ratio of day 1: saline 0.86 ± 0.033 vs. PAG 1.79 ± 0.38) and renal circulations (ratio of day 1: saline 1.26 ± 0.22 vs. 1.98 ± 0.14 PAG). These results support our hypothesis that CSE-derived H2S is an important regulator of blood pressure and vascular resistance in both mesenteric and renal circulations. Furthermore, inhalation anesthesia diminishes the effect of CSE inhibition on vascular tone.NEW & NOTEWORTHY These results suggest that CSE-derived H2S has a prominent role in regulating blood pressure and blood flow under physiological conditions, which may have been underestimated in prior studies in anesthetized subjects. Therefore, enhancing substrate availability or enzyme activity or dosing with H2S donors could be a novel therapeutic approach to treat cardiovascular diseases.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Arterias Mesentéricas/metabolismo , Arteria Renal/metabolismo , Circulación Renal , Circulación Esplácnica , Alanina/análogos & derivados , Alanina/farmacología , Animales , Presión Arterial , Velocidad del Flujo Sanguíneo , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Ratas Sprague-Dawley , Arteria Renal/efectos de los fármacos , Circulación Renal/efectos de los fármacos , Circulación Esplácnica/efectos de los fármacos , Sulfuros/farmacología , Resistencia Vascular
11.
Curr Top Membr ; 82: 53-91, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30360783

RESUMEN

Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.


Asunto(s)
Calcio/metabolismo , Colesterol/metabolismo , Endotelio Vascular/metabolismo , Canales de Calcio/química , Canales de Calcio/metabolismo , Caveolina 1/metabolismo , Humanos , Pulmón/metabolismo , Canales Catiónicos TRPC/metabolismo
12.
Pflugers Arch ; 470(4): 633-648, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29380056

RESUMEN

Following chronic hypoxia (CH), the systemic vasculature exhibits blunted vasoconstriction due to endothelial-dependent hyperpolarization (EDH). Previous data demonstrate that subsequent to CH, EDH-mediated vasodilation switches from a reliance on SKca and IKca channels to activation of the endothelial BKca channels (eBK). The mechanism by which endothelial cell stimulation activates eBK channels following CH is not known. We hypothesized that following CH, EDH-dependent vasodilation involves a TRPV4-dependent activation of eBK channels. ACh induced concentration-dependent dilation in pressurized gracilis arteries from both normoxic and CH rats. Inhibition of TRPV4 (RN-1734) attenuated the ACh response in arteries from CH rats but had no effect in normoxic animals. In the presence of L-NNA and indomethacin, TRPV4 blockade attenuated ACh-induced vasodilation in arteries from CH rats. ACh elicited endothelial TRPV4-mediated Ca2+ events in arteries from both groups. GSK1016790A (GSK101, TRPV4 agonist) elicited vasodilation in arteries from normoxic and CH rats. In arteries from normoxic animals, TRAM-34/apamin abolished the dilation to TRPV4 activation, whereas luminal iberiotoxin had no effect. In CH rats, only administration of all three Kca channel inhibitors abolished the dilation to TRPV4 activation. Using Duolink®, we observed co-localization between Cav-1, TRPV4, and BK channels in gracilis arteries and in RAECs. Disruption of endothelial caveolae with methyl-ß-cyclodextrin significantly decreased ACh-induced vasodilation in arteries from both groups. In gracilis arteries, endothelial membrane cholesterol was significantly decreased following 48 h of CH. In conclusion, CH results in a functional coupling between muscarinic receptors, TRPV4 and Kca channels in gracilis arteries.


Asunto(s)
Endotelio Vascular/metabolismo , Hipoxia/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Arterias/metabolismo , Arterias/fisiopatología , Dilatación/métodos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Hipoxia/fisiopatología , Leucina/análogos & derivados , Leucina/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
13.
Am J Physiol Heart Circ Physiol ; 314(2): H359-H369, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101179

RESUMEN

Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.


Asunto(s)
Señalización del Calcio , Membrana Celular/metabolismo , Colesterol/metabolismo , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Proteína ORAI1/metabolismo , Arteria Pulmonar/metabolismo , Animales , Presión Arterial , Benzodioxoles/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Células Cultivadas , Cromonas/farmacología , Enfermedad Crónica , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/efectos de los fármacos , Hipoxia/fisiopatología , Masculino , Proteína ORAI1/antagonistas & inhibidores , Proteína ORAI1/genética , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Ratas Sprague-Dawley , Molécula de Interacción Estromal 1/metabolismo
14.
PLoS One ; 12(6): e0180455, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28666030

RESUMEN

Pulmonary arterial hypertension is associated with a decreased antioxidant capacity. However, neither the contribution of reactive oxygen species to pulmonary vasoconstrictor sensitivity, nor the therapeutic efficacy of antioxidant strategies in this setting are known. We hypothesized that reactive oxygen species play a central role in mediating both vasoconstrictor and arterial remodeling components of severe pulmonary arterial hypertension. We examined the effect of the chemical antioxidant, TEMPOL, on right ventricular systolic pressure, vascular remodeling, and enhanced vasoconstrictor reactivity in both chronic hypoxia and hypoxia/SU5416 rat models of pulmonary hypertension. SU5416 is a vascular endothelial growth factor receptor antagonist and the combination of chronic hypoxia/SU5416 produces a model of severe pulmonary arterial hypertension with vascular plexiform lesions/fibrosis that is not present with chronic hypoxia alone. The major findings from this study are: 1) compared to hypoxia alone, hypoxia/SU5416 exposure caused more severe pulmonary hypertension, right ventricular hypertrophy, adventitial lesion formation, and greater vasoconstrictor sensitivity through a superoxide and Rho kinase-dependent Ca2+ sensitization mechanism. 2) Chronic hypoxia increased medial muscularization and superoxide levels, however there was no effect of SU5416 to augment these responses. 3) Treatment with TEMPOL decreased right ventricular systolic pressure in both hypoxia and hypoxia/SU5416 groups. 4) This effect of TEMPOL was associated with normalization of vasoconstrictor responses, but not arterial remodeling. Rather, medial hypertrophy and adventitial fibrotic lesion formation were more pronounced following chronic TEMPOL treatment in hypoxia/SU5416 rats. Our findings support a major role for reactive oxygen species in mediating enhanced vasoconstrictor reactivity and pulmonary hypertension in both chronic hypoxia and hypoxia/SU5416 rat models, despite a paradoxical effect of antioxidant therapy to exacerbate arterial remodeling in animals with severe pulmonary arterial hypertension in the hypoxia/SU5416 model.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar/metabolismo , Arteria Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Óxidos N-Cíclicos/administración & dosificación , Endotelina-1/metabolismo , Hipertensión Pulmonar/prevención & control , Hipertrofia Ventricular Derecha/patología , Masculino , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Marcadores de Spin , Superóxidos/metabolismo , Vasoconstricción
15.
Am J Physiol Heart Circ Physiol ; 312(6): H1176-H1184, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28364016

RESUMEN

Chronic hypoxia (CH)-induced pulmonary hypertension is associated with diminished production of endothelium-derived Ca2+-dependent vasodilators such as nitric oxide. Interestingly, ATP-induced endothelial Ca2+ entry as well as membrane cholesterol (Chol) are decreased in pulmonary arteries from CH rats (4 wk, barometric pressure = 380 Torr) compared with normoxic controls. Store-operated Ca2+ entry (SOCE) and depolarization-induced Ca2+ entry are major components of the response to ATP and are similarly decreased after CH. We hypothesized that membrane Chol facilitates both SOCE and depolarization-induced pulmonary endothelial Ca2+ entry and that CH attenuates these responses by decreasing membrane Chol. To test these hypotheses, we administered Chol or epicholesterol (Epichol) to acutely isolated pulmonary arterial endothelial cells (PAECs) from control and CH rats to either supplement or replace native Chol, respectively. The efficacy of membrane Chol manipulation was confirmed by filipin staining. Epichol greatly reduced ATP-induced Ca2+ influx in PAECs from control rats. Whereas Epichol similarly blunted endothelial SOCE in PAECs from both groups, Chol supplementation restored diminished SOCE in PAECs from CH rats while having no effect in controls. Similar effects of Chol manipulation on PAEC Ca2+ influx were observed in response to a depolarizing stimulus of KCl. Furthermore, KCl-induced Ca2+ entry was inhibited by the T-type Ca2+ channel antagonist mibefradil but not the L-type Ca2+ channel inhibitor diltiazem. We conclude that PAEC membrane Chol is required for ATP-induced Ca2+ entry and its two components, SOCE and depolarization-induced Ca2+ entry, and that reduced Ca2+ entry after CH may be due to loss of this key regulator.NEW & NOTEWORTHY This research is the first to examine the direct role of membrane cholesterol in regulating pulmonary endothelial agonist-induced Ca2+ entry and its components. The results provide a potential mechanism by which chronic hypoxia impairs pulmonary endothelial Ca2+ influx, which may contribute to pulmonary hypertension.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Arteria Pulmonar/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Caveolas/metabolismo , Membrana Celular/efectos de los fármacos , Células Cultivadas , Colesterol/farmacología , Enfermedad Crónica , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Masculino , Potenciales de la Membrana , Arteria Pulmonar/efectos de los fármacos , Ratas Sprague-Dawley , Factores de Tiempo
16.
Am J Physiol Heart Circ Physiol ; 311(6): H1437-H1444, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27765747

RESUMEN

Hydrogen sulfide (H2S) is a recently described gaseous vasodilator produced within the vasculature by the enzymes cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase. Previous data demonstrate that endothelial cells (EC) are the source of endogenous H2S production and are required for H2S-induced dilation. However, the signal transduction pathway activated by H2S within EC has not been elucidated. TRPV4 and large-conductance Ca2+-activated K channels (BK channels) are expressed in EC. H2S-induced dilation is inhibited by luminal administration of iberiotoxin and disruption of the endothelium. Calcium influx through TRPV4 may activate these endothelial BK channels (eBK). We hypothesized that H2S-mediated vasodilation involves activation of TRPV4 within the endothelium. In pressurized, phenylephrine-constricted mesenteric arteries, H2S elicited a dose-dependent vasodilation blocked by inhibition of TRPV4 channels (GSK2193874A, 300 nM). H2S (1 µM) increased TRPV4-dependent (1.8-fold) localized calcium events in EC of pressurized arteries loaded with fluo-4 and Oregon Green. In pressurized EC tubes, H2S (1 µM) and the TRPV4 activator, GSK101679A (30 nM), increased calcium events 1.8- and 1.5-fold, respectively. H2S-induced an iberiotoxin-sensitive outward current measured using whole cell patch-clamp techniques in freshly dispersed EC. H2S increased K+ currents from 10 to 30 pA/pF at +150 mV. Treatment with Na2S increased the level of sulfhydration of TRPV4 channels in aortic ECs. These results demonstrate that H2S-mediated vasodilation involves activation of TRPV4-dependent Ca2+ influx and BK channel activation within EC. Activation of TRPV4 channels appears to cause calcium events that result in the opening of eBK channels, endothelial hyperpolarization, and subsequent vasodilation.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Gasotransmisores/farmacología , Sulfuro de Hidrógeno/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Vasodilatación/efectos de los fármacos , Animales , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Leucina/análogos & derivados , Leucina/farmacología , Masculino , Arterias Mesentéricas/metabolismo , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores
17.
Am J Physiol Heart Circ Physiol ; 309(11): H1915-22, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26408536

RESUMEN

Ca(+) sparks are vascular smooth muscle cell (VSMC) Ca(2+)-release events that are mediated by ryanodine receptors (RyR) and promote vasodilation by activating large-conductance Ca(2+)-activated potassium channels and inhibiting myogenic tone. We have previously reported that exposing rats to intermittent hypoxia (IH) to simulate sleep apnea augments myogenic tone in mesenteric arteries through loss of hydrogen sulfide (H2S)-induced dilation. Because we also observed that H2S can increase Ca(2+) spark activity, we hypothesized that loss of H2S after IH exposure reduces Ca(2+) spark activity and that blocking Ca(2+) spark generation reduces H2S-induced dilation. Ca(2+) spark activity was lower in VSMC of arteries from IH compared with sham-exposed rats. Furthermore, depolarizing VSMC by increasing luminal pressure (from 20 to 100 mmHg) or by elevating extracellular [K(+)] increased spark activity in VSMC of arteries from sham rats but had no effect in arteries from IH rats. Inhibiting endogenous H2S production in sham arteries prevented these increases. NaHS or phosphodiesterase inhibition increased spark activity to the same extent in sham and IH arteries. Depolarization-induced increases in Ca(2+) spark activity were due to increased sparks per site, whereas H2S increases in spark activity were due to increased spark sites per cell. Finally, inhibiting Ca(2+) spark activity with ryanodine (10 µM) enhanced myogenic tone in arteries from sham but not IH rats and blocked dilation to exogenous H2S in arteries from both sham and IH rats. Our results suggest that H2S regulates RyR activation and that H2S-induced dilation requires Ca(2+) spark activation. IH exposure decreases endogenous H2S-dependent Ca(2+) spark activation to cause membrane depolarization and enhance myogenic tone in mesenteric arteries.


Asunto(s)
Señalización del Calcio , Hipoxia/metabolismo , Músculo Liso Vascular/metabolismo , Vasodilatación , Animales , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Sulfuro de Hidrógeno/metabolismo , Hipoxia/fisiopatología , Técnicas In Vitro , Masculino , Potenciales de la Membrana , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Inhibidores de Fosfodiesterasa/farmacología , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sulfuros/metabolismo , Sulfuros/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
18.
Am J Physiol Heart Circ Physiol ; 304(11): H1446-54, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23525712

RESUMEN

We have previously shown that hydrogen sulfide (H2S) reduces myogenic tone and causes relaxation of phenylephrine (PE)-constricted mesenteric arteries. This effect of H2S to cause vasodilation and vascular smooth muscle cell (VSMC) hyperpolarization was mediated by large-conductance Ca(2+)-activated potassium channels (BKCa). Ca(2+) sparks are ryanodine receptor (RyR)-mediated Ca(2+)-release events that activate BKCa channels in VSMCs to cause membrane hyperpolarization and vasodilation. We hypothesized that H2S activates Ca(2+) sparks in small mesenteric arteries. Ca(2+) sparks were measured using confocal microscopy in rat mesenteric arteries loaded with the Ca(2+) indicator fluo-4. VSMC membrane potential (Em) was measured in isolated arteries using sharp microelectrodes. In PE-constricted arteries, the H2S donor NaHS caused vasodilation that was inhibited by ryanodine (RyR blocker), abluminal or luminal iberiotoxin (IbTx, BKCa blocker), endothelial cell (EC) disruption, and sulfaphenazole [cytochrome P-450 2C (Cyp2C) inhibitor]. The H2S donor NaHS (10 µmol/l) increased Ca(2+) sparks but only in the presence of intact EC and this was blocked by sulfaphenazole or luminal IbTx. Inhibiting cystathionine γ-lyase (CSE)-derived H2S with ß-cyano-l-alanine (BCA) also reduced VSMC Ca(2+) spark frequency in mesenteric arteries, as did EC disruption. However, excess CSE substrate homocysteine did not affect spark activity. NaHS hyperpolarized VSMC Em in PE-depolarized mesenteric arteries with intact EC and also hyperpolarized EC Em in arteries cut open to expose the lumen. This hyperpolarization was prevented by ryanodine, sulfaphenazole, and abluminal or luminal IbTx. BCA reduced IbTx-sensitive K(+) currents in freshly dispersed mesenteric ECs. These results suggest that H2S increases Ca(2+) spark activity in mesenteric artery VSMC through activation of endothelial BKCa channels and Cyp2C, a novel vasodilatory pathway for this emerging signaling molecule.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Endotelio Vascular/metabolismo , Sulfuro de Hidrógeno/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Vasodilatadores , Análisis de Varianza , Compuestos de Anilina , Animales , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Fenómenos Electrofisiológicos , Endotelio Vascular/efectos de los fármacos , Colorantes Fluorescentes , Inmunohistoquímica , Técnicas In Vitro , Masculino , Microelectrodos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Xantenos
19.
Cardiovasc Toxicol ; 12(3): 226-34, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22311109

RESUMEN

Atrophic signaling elements of the ubiquitin-proteasome system (UPS) are involved in skeletal muscle wasting as well as pressure overload models of heart failure. In our prior experiments, we demonstrated a transcriptional downregulation of atrophy-inducing vascular E3 ubiquitin ligases in a toxic model of pulmonary hypertension where pulmonary artery and right ventricle (RV) hypertrophy are evident. Given the numerous reports of glucocorticoid activation of the UPS and the negative regulator of muscle mass, myostatin, we investigated the efficacy of dexamethasone to reverse monocrotaline (MCT)-induced pulmonary hypertension and augment atrogin-1 expression in both pulmonary arteries and myocardium. Dexamethasone caused significant reductions in body weight in combination with MCT. As predicted, MCT-induced pulmonary hypertension was evident by increases in RV systolic pressure, right ventricle to left ventricle plus septal weight ratios (RV/LVS) and arterial remodeling. MCT treatment significantly reduced both RV and PA atrogin-1 expression. Dexamethasone treatment reversed the MCT-induced pathological indices and restored RV atrogin-1 expression, but did not impact atrogin-1 expression in pulmonary arteries. Myostatin was poorly expressed in pulmonary arteries compared to the RV, and dexamethasone treatment increase RV myostatin in controls but not MCT-treated rats. These findings suggest that mechanisms independent of myostatin/atrogin-1 are responsible for glucocorticoid efficacy in this model of pulmonary hypertension.


Asunto(s)
Dexametasona/farmacología , Expresión Génica , Glucocorticoides/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Monocrotalina/toxicidad , Proteínas Musculares/genética , Proteínas Ligasas SKP Cullina F-box/genética , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Modelos Animales de Enfermedad , Antagonismo de Drogas , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Masculino , Proteínas Musculares/metabolismo , Miostatina/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Ligasas SKP Cullina F-box/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 301(4): H1331-40, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21841016

RESUMEN

Agonist-induced Ca(2+) entry into the pulmonary endothelium depends on activation of both store-operated Ca(2+) (SOC) entry and receptor-operated Ca(2+) (ROC) entry. We previously reported that pulmonary endothelial cell SOC entry and ROC entry are reduced in chronic hypoxia (CH)-induced pulmonary hypertension. We hypothesized that diminished endothelial Ca(2+) entry following CH is due to derangement of caveolin-1 (cav-1) containing cholesterol-enriched membrane domains important in agonist-induced Ca(2+) entry. To test this hypothesis, we measured Ca(2+) influx by fura-2 fluorescence following application of ATP (20 µM) in freshly isolated endothelial cells pretreated with the caveolar-disrupting agent methyl-ß-cyclodextrin (mßCD; 10 mM). Cholesterol depletion with mßCD attenuated agonist-induced Ca(2+) entry in control endothelial cells to the level of that from CH rats. Interestingly, endothelial membrane cholesterol was lower in cells isolated from CH rats compared with controls although the density of caveolae did not differ between groups. Cholesterol repletion with a cholesterol:mßCD mixture or the introduction of the cav-1 scaffolding peptide (AP-cav; 10 µM) rescued ATP-induced Ca(2+) entry in endothelia from CH arteries. Agonist-induced Ca(2+) entry assessed by Mn(2+) quenching of fura-2 fluorescence was also significantly elevated by luminal AP-cav in pressurized intrapulmonary arteries from CH rats to levels of controls. Similarly, patch-clamp experiments revealed diminished inward current in response to ATP in cells from CH rats compared with controls that was restored by AP-cav. These data suggest that CH-induced pulmonary hypertension leads to reduced membrane cholesterol that limits the activity of ion channels necessary for agonist-activated Ca(2+) entry.


Asunto(s)
Calcio/metabolismo , Endotelio/metabolismo , Hipoxia/metabolismo , Pulmón/metabolismo , Lípidos de la Membrana/fisiología , Adenosina Trifosfato/farmacología , Animales , Canales de Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo , Separación Celular , Colesterol/metabolismo , Colesterol/fisiología , Enfermedad Crónica , Células Endoteliales/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes , Fura-2 , Masculino , Manganeso/metabolismo , Lípidos de la Membrana/metabolismo , Microscopía Electrónica , Técnicas de Placa-Clamp , Arteria Pulmonar/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA