Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Microbiol Spectr ; : e0467022, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36853031

RESUMEN

Staphylococcus schleiferi is an opportunistic pathogen in humans and dogs. Recent taxonomic reassignment of its subspecies (S. schleiferi subsp. schleiferi and S. schleiferi subsp. coagulans) into two separate species (S. schleiferi and S. coagulans) lacks supporting data for diagnostic implications and clinical relevance. We aimed to confirm the reclassification of S. schleiferi by using genomic and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) data for a large set of isolates from humans and animals to investigate their molecular epidemiology and clinical relevance. Routine MALDI-TOF analysis and Illumina sequencing were performed on 165 S. schleiferi isolates from the Netherlands. With 33 publicly available genomes, the study included 198 genomes from 149 dogs, 34 humans, and 15 other sources. The Type Strain Genome Server was used to identify species in the genomes, and the MALDI-TOF MS database was extended to improve species differentiation. MALDI-TOF did not discriminate between S. schleiferi and S. coagulans. Genome phylogeny distinguished the two species in two monophyletic clusters. S. schleiferi isolates originated from humans, while S. coagulans isolates were found in animals and three human isolates clustering with the animal isolates. The sialidase B gene (nanB) was a unique marker gene for S. schleiferi, whereas the chrA gene was exclusive for S. coagulans. The mecA gene was exclusively detected in S. coagulans, as were the lnu(A), blaZ, erm(B/C), tet(O/M), and aac(6')-aph(2'') genes. The MALDI-TOF database extension did not improve differentiation between the two species. Even though our whole-genome sequencing-based approach showed clear differentiation between these two species, it remains critical to identify S. schleiferi and S. coagulans correctly in routine diagnostics. IMPORTANCE This study clearly shows that S. schleiferi is a concern in human hospital settings, whereas S. coagulans predominantly causes infections in animals. S. coagulans is more resistant to antibiotics and can sometimes transmit to humans via exposure to infected dogs. Even though genome-based methods can clearly differentiate the two species, current diagnostic methods used routinely in clinical microbiology laboratories cannot distinguish the two bacterial species.

3.
Pathogens ; 11(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35215067

RESUMEN

Acinetobacter baumannii is a nosocomial pathogen that frequently causes healthcare-acquired infections. The global spread of multidrug-resistant (MDR) strains with its ability to survive in the environment for extended periods imposes a pressing public health threat. Two MDR A. baumannii outbreaks occurred in 2012 and 2014 in a companion animal intensive care unit (caICU) in the Netherlands. Whole-genome sequencing (WGS) was performed on dog clinical isolates (n = 6), environmental isolates (n = 5), and human reference strains (n = 3) to investigate if the isolates of the two outbreaks were related. All clinical isolates shared identical resistance phenotypes displaying multidrug resistance. Multi-locus Sequence Typing (MLST) revealed that all clinical isolates belonged to sequence type ST2. The core genome MLST (cgMLST) results confirmed that the isolates of the two outbreaks were not related. Comparative genome analysis showed that the outbreak isolates contained different gene contents, including mobile genetic elements associated with antimicrobial resistance genes (ARGs). The time-measured phylogenetic reconstruction revealed that the outbreak isolates diverged approximately 30 years before 2014. Our study shows the importance of WGS analyses combined with molecular clock investigations to reduce transmission of MDR A. baumannii infections in companion animal clinics.

4.
J Clin Invest ; 131(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571163

RESUMEN

BackgroundWe conducted a phase I clinical trial that infused CCR5 gene-edited CD4+ T cells to determine how these T cells can better enable HIV cure strategies.MethodsThe aim of trial was to develop RNA-based approaches to deliver zinc finger nuclease (ZFN), evaluate the effect of CCR5 gene-edited CD4+ T cells on the HIV-specific T cell response, test the ability of infused CCR5 gene-edited T cells to delay viral rebound during analytical treatment interruption, and determine whether individuals heterozygous for CCR5 Δ32 preferentially benefit. We enrolled 14 individuals living with HIV whose viral load was well controlled by antiretroviral therapy (ART). We measured the time to viral rebound after ART withdrawal, the persistence of CCR5-edited CD4+ T cells, and whether infusion of 10 billion CCR5-edited CD4+ T cells augmented the HIV-specific immune response.ResultsInfusion of the CD4+ T cells was well tolerated, with no serious adverse events. We observed a modest delay in the time to viral rebound relative to historical controls; however, 3 of the 14 individuals, 2 of whom were heterozygous for CCR5 Δ32, showed post-viral rebound control of viremia, before ultimately losing control of viral replication. Interestingly, only these individuals had substantial restoration of HIV-specific CD8+ T cell responses. We observed immune escape for 1 of these reinvigorated responses at viral recrudescence, illustrating a direct link between viral control and enhanced CD8+ T cell responses.ConclusionThese findings demonstrate how CCR5 gene-edited CD4+ T cell infusion could aid HIV cure strategies by augmenting preexisting HIV-specific immune responses.REGISTRATIONClinicalTrials.gov NCT02388594.FundingNIH funding (R01AI104400, UM1AI126620, U19AI149680, T32AI007632) was provided by the National Institute of Allergy and Infectious Diseases (NIAID), the National Institute on Drug Abuse (NIDA), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). Sangamo Therapeutics also provided funding for these studies.


Asunto(s)
Antirretrovirales/administración & dosificación , Linfocitos T CD4-Positivos , Edición Génica , Infecciones por VIH , VIH-1/fisiología , Transfusión de Linfocitos , Receptores CCR5 , Replicación Viral/inmunología , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/trasplante , Linfocitos T CD8-positivos/inmunología , Femenino , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Humanos , Masculino , Persona de Mediana Edad , Receptores CCR5/genética , Receptores CCR5/inmunología , Carga Viral/genética , Carga Viral/inmunología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA