Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712232

RESUMEN

Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a novel catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal target delivery while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.

2.
Sci Transl Med ; 14(645): eabn0402, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35584229

RESUMEN

Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.


Asunto(s)
Anticuerpos Biespecíficos , Linfocitos T , Animales , Humanos , Ratones , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígeno B7-H1 , Complejo CD3 , Cistina , Modelos Animales de Enfermedad , Mamíferos , Péptidos
3.
Sci Transl Med ; 12(533)2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132215

RESUMEN

On-target, off-tissue toxicity limits the systemic use of drugs that would otherwise reduce symptoms or reverse the damage of arthritic diseases, leaving millions of patients in pain and with limited physical mobility. We identified cystine-dense peptides (CDPs) that rapidly accumulate in cartilage of the knees, ankles, hips, shoulders, and intervertebral discs after systemic administration. These CDPs could be used to concentrate arthritis drugs in joints. A cartilage-accumulating peptide, CDP-11R, reached peak concentration in cartilage within 30 min after administration and remained detectable for more than 4 days. Structural analysis of the peptides by crystallography revealed that the distribution of positive charge may be a distinguishing feature of joint-accumulating CDPs. In addition, quantitative whole-body autoradiography showed that the disulfide-bonded tertiary structure is critical for cartilage accumulation and retention. CDP-11R distributed to joints while carrying a fluorophore imaging agent or one of two different steroid payloads, dexamethasone (dex) and triamcinolone acetonide (TAA). Of the two payloads, the dex conjugate did not advance because the free drug released into circulation was sufficient to cause on-target toxicity. In contrast, the CDP-11R-TAA conjugate alleviated joint inflammation in the rat collagen-induced model of rheumatoid arthritis while avoiding toxicities that occurred with nontargeted steroid treatment at the same molar dose. This conjugate shows promise for clinical development and establishes proof of concept for multijoint targeting of disease-modifying therapeutic payloads.


Asunto(s)
Artritis Experimental , Corticoesteroides , Animales , Artritis Experimental/tratamiento farmacológico , Cartílago , Humanos , Péptidos , Ratas , Esteroides
4.
Trends Biochem Sci ; 45(4): 332-346, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32014389

RESUMEN

Miniproteins are a diverse group of protein scaffolds characterized by small (1-10 kDa) size, stability, and versatility in drug-like roles. Coming largely from native sources, they have been widely adopted into drug development pipelines. While their structures and capabilities are diverse, the approaches to their utilization share more similarities with each other than with more widely used modalities (e.g., antibodies or small molecules). In this review, we highlight recent advances in miniprotein-based approaches to otherwise poorly addressed clinical needs, including structure-based and functional characterization. We also summarize their unique screening strategies and pharmacology considerations. Through a greater understanding of the unique properties that make them attractive for drug design, miniproteins can be effectively utilized against targets that are intractable by other approaches.


Asunto(s)
Desarrollo de Medicamentos , Proteínas , Animales , Humanos , Proteínas/química , Proteínas/metabolismo
5.
Bioconjug Chem ; 26(10): 2070-5, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26439457

RESUMEN

Bioconjugation by copper-catalyzed azide-alkyne cycloaddition (CuAAC) provides a powerful means to produce site-specifically modified proteins. However, the use of a copper catalyst brings about the possible generation of reactive oxygen species that could cause degradation of vulnerable amino acid residues. We investigated whether PEGylation by CuAAC caused any modifications to the therapeutic protein interferon beta-1b, which was produced via global amino acid substitution with azidohomo-alanine at the N-terminus and contains no methionine residues. Using previously reported reaction conditions, LC-MS peptide mapping detected +32 Da and +48 Da oxidation modifications of tryptic peptides 28-33 (LEYCLK) and 137-147 (EYSHCAWTIVR) in the protein post-PEGylation. The oxidative degradation increased with reaction time, whereas reducing the copper concentration slowed the PEGylation rate as well as the oxidation rate. Replacing dithiothreitol (DTT) with any of five different monothiol reducing agents in anaerobic conditions allowed efficient PEGylation in 2-4 h and abrogated oxidative degradation. Free cysteine provided reproducible reaction results as a reducing agent in this system and has been successfully applied to other protein conjugations. Monothiol reducing agents, such as cysteine, may be useful tools as protective reducing agents for CuAAC in some bioconjugation systems.


Asunto(s)
Cobre/química , Cisteína/química , Interferon beta-1b/química , Polietilenglicoles/química , Sustancias Reductoras/química , Sustitución de Aminoácidos , Catálisis , Reacción de Cicloadición/métodos , Ditiotreitol/química , Oxidación-Reducción
6.
Protein Eng Des Sel ; 28(10): 467-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26271488

RESUMEN

Targeting more than one molecule in multifactorial diseases involving several disease mediators may provide improved therapeutic efficacy. Psoriasis is a multifactorial disease in which interleukin (IL)-6 and IL-23 are important disease mediators because they facilitate development of Th17 cells; widely accepted to be associated with psoriasis. To meet the need for new therapeutics, we aimed to create a clinically relevant bispecific drug, by combining the inhibitory properties of anti-IL-6 and anti-IL-23 antibodies, exhibiting high affinity, high stability and the ability to be produced in high yield. The bispecific molecule AZ17 was created by combining high affinity binding domains originating from monoclonal antibodies targeting human IL-6 and IL-23. To allow for high and efficient production, AZ17 was assembled by site-specific bioconjugation from two individual single chain fragment variables that were synthesized separately in Escherichia coli. To improve stability and extend pharmacokinetics, a flexible poly-ethylene glycol molecule was used as linker. In preclinical psoriasis models, AZ17 reduced IL-23-induced ear inflammation and improved psoriasis in a xenograft transplantation model where psoriasis skin is transplanted onto immune-deficient mice. The data presented here suggest AZ17 to be a promising drug candidate in psoriasis and other inflammatory diseases associated with Th17 cell development.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Interleucina-23/inmunología , Interleucina-6/inmunología , Terapia Molecular Dirigida , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Trasplante Heterólogo , Animales , Anticuerpos Biespecíficos/farmacocinética , Anticuerpos Biespecíficos/uso terapéutico , Especificidad de Anticuerpos , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratas
7.
Bioconjug Chem ; 23(10): 2087-97, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22988919

RESUMEN

The development of protein conjugate therapeutics requires control over the site of modification to allow for reproducible generation of a product with the desired potency, pharmacokinetic, and safety profile. Placement of a single nonnatural amino acid at the desired modification site of a recombinant protein, followed by a bioorthogonal reaction, can provide complete control. To this end, we describe the development of copper-catalyzed azide-alkyne cycloaddition (CuAAC, a click chemistry reaction) for site-specific PEGylation of interferon ß-1b (IFNb) containing azidohomoalanine (Aha) at the N-terminus. Reaction conditions were optimized using various propargyl-activated PEGs, tris(benzyltriazolylmethyl)amine (TBTA), copper sulfate, and dithiothreitol (DTT) in the presence of SDS. The requirement for air in order to advance the redox potential of the reaction was investigated. The addition of unreactive PEG diol reduced the required molar ratio to 2:1 PEG-alkyne to IFNb. The resultant method produced high conversion of Aha-containing IFNb to the single desired product. PEG-IFNbs with 10, 20, 30, and 40 kDa linear or 40 kDa branched PEGs were produced with these methods and compared. Increasing PEG size yielded decreasing in vitro antiviral activities along with concomitant increases in elimination half-life, AUC, and bioavailability when administered in rats or monkeys. A Daudi tumor xenograft model provided comparative evaluation of these combined effects, wherein a 40 kDa branched PEG-IFNb was much more effective than conjugates with smaller PEGs or unPEGylated IFNb at preventing tumor growth in spite of dosing with fewer units and lesser frequency. The results demonstrate the capability of site-specific nonnatural amino acid incorporation to generate novel biomolecule conjugates with increased in vivo efficacy.


Asunto(s)
Alquinos/química , Antineoplásicos/química , Antivirales/química , Azidas/química , Cobre/química , Interferón beta/química , Polietilenglicoles/química , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antivirales/farmacocinética , Antivirales/farmacología , Sitios de Unión , Disponibilidad Biológica , Catálisis , Línea Celular Tumoral , Reacción de Cicloadición , Humanos , Interferon beta-1b , Interferón beta/farmacocinética , Interferón beta/farmacología , Cinética , Masculino , Metionina/química , Ratas , Ratas Sprague-Dawley , Especificidad por Sustrato , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...