Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NMR Biomed ; : e5212, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005110

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive X-linked neuromuscular disorder caused by the absence of functional dystrophin protein. In addition to muscle, dystrophin is expressed in the brain in both neurons and glial cells. Previous studies have shown altered white matter microstructure in patients with DMD using diffusion tensor imaging (DTI). However, DTI measures the diffusion properties of water, a ubiquitous molecule, making it difficult to unravel the underlying pathology. Diffusion-weighted spectroscopy (DWS) is a complementary technique which measures diffusion properties of cell-specific intracellular metabolites. Here we performed both DWS and DTI measurements to disentangle intra- and extracellular contributions to white matter changes in patients with DMD. Scans were conducted in patients with DMD (15.5 ± 4.6 y/o) and age- and sex-matched healthy controls (16.3 ± 3.3 y/o). DWS measurements were obtained in a volume of interest (VOI) positioned in the left parietal white matter. Apparent diffusion coefficients (ADCs) were calculated for total N-acetylaspartate (tNAA), choline compounds (tCho), and total creatine (tCr). The tNAA/tCr and tCho/tCr ratios were calculated from the non-diffusion-weighted spectrum. Mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and fractional anisotropy of water within the VOI were extracted from DTI measurements. DWS and DTI data from patients with DMD (respectively n = 20 and n = 18) and n = 10 healthy controls were included. No differences in metabolite ADC or in concentration ratios were found between patients with DMD and controls. In contrast, water diffusion (MD, t = -2.727, p = 0.011; RD, t = -2.720, p = 0.011; AD, t = -2.715, p = 0.012) within the VOI was significantly higher in patients compared with healthy controls. Taken together, our study illustrates the potential of combining DTI and DWS to gain a better understanding of microstructural changes and their association with disease mechanisms in a clinical setting.

2.
Brain Commun ; 6(1): fcae026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370447

RESUMEN

In Alzheimer's disease, reconfiguration and deterioration of tissue microstructure occur before substantial degeneration become evident. We explored the diffusion properties of both water, a ubiquitous marker measured by diffusion MRI, and N-acetyl-aspartate, a neuronal metabolite probed by diffusion-weighted magnetic resonance spectroscopy, for investigating cortical microstructural changes downstream of Alzheimer's disease pathology. To this aim, 50 participants from the Swedish BioFINDER-2 study were scanned on both 7 and 3 T MRI systems. We found that in cognitively impaired participants with evidence of both abnormal amyloid-beta (CSF amyloid-beta42/40) and tau accumulation (tau-PET), the N-acetyl-aspartate diffusion rate was significantly lower than in cognitively unimpaired participants (P < 0.05). This supports the hypothesis that intraneuronal tau accumulation hinders diffusion in the neuronal cytosol. Conversely, water diffusivity was higher in cognitively impaired participants (P < 0.001) and was positively associated with the concentration of myo-inositol, a preferentially astrocytic metabolite (P < 0.001), suggesting that water diffusion is sensitive to alterations in the extracellular space and in glia. In conclusion, measuring the diffusion properties of both water and N-acetyl-aspartate provides rich information on the cortical microstructure in Alzheimer's disease, and can be used to develop new sensitive and specific markers to microstructural changes occurring during the disease course.

3.
NMR Biomed ; 37(5): e5104, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38258649

RESUMEN

Metabolite-weighted chemical exchange saturation transfer MRI can be used to indirectly image metabolites such as creatine and glutamate. This study aims to further explore the contrast of CEST at 2 ppm in the human brain at 7T and investigate the metabolite correlates of CEST at 2 ppm via correlations with magnetic resonance spectroscopy (MRS). Simulations were performed to establish the optimal acquisition parameters, such as total saturation time (tsat) and B1 root mean squared (B1rms) for CEST at 2 ppm in the human brain. Parameters were validated via in vitro phantom studies at 7T using concentrations, pH and temperature comparable to what is found in the human brain. Finally, 10 healthy volunteers were scanned at 7T for comparison with MRS. Our results show that the optimal parameters to acquire CEST at 2 ppm images are: B1rms = 2.14 µT & tsat = 1500 ms, respectively. Comparison with MRS showed no significant correlation between CEST at 2 ppm and total Creatine measured by MRS (R = 0.19; p-value = 0.273). However, a significant correlation was found between CEST at 2 ppm and Glu (R = 0.39; p-value = 0.033), indicating the broad Glutamate-weighted CEST as the main measurable contributor to CEST at 2 ppm. We identified and confirmed optimal CEST at 2 ppm sequence parameters and validated CEST at 2 ppm measurements in a controlled in vitro environment. Our findings suggest that glutamate is a substantial contributor to the CEST at 2 ppm contrast observed in the human brain, whereas the creatine contribution to CEST at 2 ppm in the brain did not show a measurable contribution.


Asunto(s)
Encéfalo , Creatina , Humanos , Creatina/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Ácido Glutámico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...