RESUMEN
This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques inâ situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.
Asunto(s)
Péptidos beta-Amiloides , Colorantes Fluorescentes , Pirenos , Colorantes Fluorescentes/química , Pirenos/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Norbornanos/química , Placa Amiloide/química , Placa Amiloide/diagnóstico por imagen , Teoría Funcional de la Densidad , Isomerismo , Espectrometría de FluorescenciaRESUMEN
Ferroptosis is an iron-dependent lipid-peroxidation-driven mechanism of cell death and a promising therapeutic target to eradicate cancer cells. In this study, we discovered that boronic acid-derived salicylidenehydrazone (BASHY) dyes are highly efficient singlet-oxygen photosensitizers (PSs; ΦΔ up to 0.8) that induce ferroptosis triggered by photodynamic therapy. The best-performing BASHY dye displayed a high phototoxicity against the human glioblastoma multiform U87 cell line, with an IC50 value in the low nanomolar range (4.40 nM) and a remarkable phototoxicity index (PI > 22,700). Importantly, BASHY dyes were shown to accumulate in lipid droplets (LDs) and this intracellular partition was found to be essential for the enhanced phototoxicity and the induction of ferroptosis through lipid peroxidation. The safety and phototoxicity of this platform were validated using an in vivo zebrafish model (Danio rerio).
Asunto(s)
Ferroptosis , Fármacos Fotosensibilizantes , Animales , Humanos , Fármacos Fotosensibilizantes/farmacología , Colorantes , Peroxidación de Lípido , Gotas Lipídicas , Pez CebraRESUMEN
An "off-on" fluorescent nanoprobe for near-infrared multiphoton imaging of singlet oxygen has been developed. The nanoprobe comprises a naphthoxazole fluorescent unit and a singlet-oxygen-sensitive furan derivative attached to the surface of mesoporous silica nanoparticles. In solution, the fluorescence of the nanoprobe increases upon reaction with singlet oxygen both under one- and multiphoton excitation, with fluorescence enhancements up to 180-fold. The nanoprobe can be readily internalized by macrophage cells and is capable of imaging intracellular singlet oxygen under multiphoton excitation.
RESUMEN
A series of dithienylethene (DTE) photoswitches with aza-heteroaromatic cationic moieties is synthesized. The switches are characterized regarding their photochemical and photophysical properties in acetonitrile and in water. The efficiency of the switching and the photostationary state composition depend on the degree of π-conjugation of the heteroaromatic systems. Thus, DTEs with acridinium-derived moieties have very low quantum yields for the ring-closing process, which is in contrast to switches with pyridinium and quinolinium moieties. All switches emit fluorescence in their open forms. The involved electronic transitions are traced back to an integrative picture including the DTE core and the cationic arms. The emission can be fine-tuned by the π-conjugation of the heteroaromatic cations, reaching the red spectral region for DTEs with acridinium moieties. On ring-closing of the DTEs the fluorescence is not observable anymore. Theoretical calculations point to rather low-lying energy levels of the highly conjugated ring-closed DTEs, which would originate near-infrared emission (> 1200 nm). The latter is predicted to be very weak due to the concurrent non-radiative deactivation, according to the energy-gap law. In essence, an ON-OFF fluorescence switching as the result of the electrocyclic ring-closing reaction is observed.
Asunto(s)
Colorantes , Estructura Molecular , Fluorescencia , CationesRESUMEN
A set of nine boronic-acid-derived salicylidenehydrazone (BASHY) complexes has been synthesized in good to very good chemical yields in a versatile three-component reaction. In an extension to previous reports on this dye platform, the focus was put on the electronic modification of the "vertical" positions of the salicylidenehydrazone backbone. This enabled the observation of fluorescence quenching by photoinduced electron transfer (PeT), which can be reverted by the addition of acid in organic solvent (OFF-ON fluorescence switching). The resulting emission is observed in the green-to-orange spectral region (maxima at 520-590â nm). In contrast, under physiological pH conditions in water, the PeT process is inherently decativated, thereby enabling the observation of fluorescence in the red-to-NIR region (maxima at 650-680â nm) with appreciable quantum yields and lifetimes. The latter characteristic supported the application of the dyes in fluorescence lifetime imaging (FLIM) of live A549 cells.
RESUMEN
Amyloid beta (Aß) plaques are a major pathological hallmark of Alzheimer's disease (AD) and constitute of structurally heterogenic entities (polymorphs) that have been implicated in the phenotypic heterogeneity of AD pathology and pathogenesis. Understanding amyloid aggregation has been a critical limiting factor to gain understanding of AD pathogenesis, ultimately reflected in that the underlying mechanism remains elusive. We identified a fluorescent probe in the form of a turn-off photoswitchable norbornadiene derivative (NBD1) with several microenvironment-sensitive properties that make it relevant for applications within advanced fluorescence imaging, for example, multifunctional imaging. We explored the application of NBD1 for in situ delineation of structurally heterogenic Aß plaques in transgenic AD mouse models. NBD1 plaque imaging shows characteristic broader emission bands in the periphery and more narrow emission bands in the dense cores of mature cored plaques. Further, we demonstrate in situ photoisomerization of NBD1 to quadricyclane and thermal recovery in single plaques, which is relevant for applications within both functional and super-resolution imaging. This is the first time a norbornadiene photoswitch has been used as a probe for fluorescence imaging of Aß plaque pathology in situ and that its spectroscopic and switching properties have been studied within the specific environment of senile Aß plaques. These findings open the way toward new applications of NBD-based photoswitchable fluorescent probes for super-resolution or dual-color imaging and multifunctional microscopy of amyloid plaque heterogeneity. This could allow to visualize Aß plaques with resolution beyond the diffraction limit, label different plaque types, and gain insights into their physicochemical composition.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Péptidos beta-Amiloides/química , Placa Amiloide/patología , Modelos Animales de Enfermedad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Colorantes FluorescentesRESUMEN
Nonlinear optical techniques as two-photon absorption (TPA) have raised relevant interest within the last years due to the capability to excite chromophores with photons of wavelength equal to only half of the corresponding one-photon absorption energy. At the same time, its probability being proportional to the square of the light source intensity, it allows a better spatial control of the light-induced phenomenon. Although a consistent number of experimental studies focus on increasing the TPA cross section, very few of them are devoted to the study of photochemical phenomena induced by TPA. Here, we show a design strategy to find suitable E/Z photoswitches that can be activated by TPA. A theoretical approach is followed to predict the TPA cross sections related to different excited states of various photoswitches' families, finally concluding that protonated Schiff-bases (retinal)-like photoswitches outperform compared to the others. The donor-acceptor substitution effect is therefore rationalized for the successful TPA activatable photoswitch, in order to maximize its properties, finally also forecasting a possible application in optogenetics. Some experimental measurements are also carried out to support our conclusions.
RESUMEN
Manganese (Mn) oxidation is performed through oxidative Mn-oxidizing bacteria (MnOxb) as the main bio-weathering mechanism for Mn(III/IV) deposits during soil formation. However, with an increase in temperature, the respiration rate also increases, producing Reactive Oxygen Species (ROS) as by-products, which are harmful to microbial cells. We hypothesize that bacterial ROS oxidize Mn(II) to Mn(III/IV) as a secondary non-enzymatic temperature-dependent mechanism for cell protection. Fourteen MnOxb were isolated from Antarctic soils under the global warming effect, and peroxidase (PO) activity, ROS, and Mn(III/IV) production were evaluated for 120 h of incubation at 4 °C, 15 °C, and 30 °C. ROS contributions to Mn oxidation were evaluated in Arthrobacter oxydans under antioxidant (Trolox) and ROS-stimulated (menadione) conditions. The Mn(III/IV) concentration increased with temperature and positively correlated with ROS production. ROS scavenging with Trolox depleted the Mn oxidation, and ROS-stimulant increased the Mn precipitation in A. oxydans. Increasing the Mn(II) concentration caused a reduction in the membrane potential and bacterial viability, which resulted in Mn precipitation on the bacteria surface. In conclusion, bacterial ROS production serves as a complementary non-enzymatic temperature-dependent mechanism for Mn(II) oxidation as a response in warming environments.
RESUMEN
Environmental pollution is a worldwide problem recognized by the World Health Organization as a major health risk factor that affects low-, middle- and high-income countries. Suspended particulate matter is among the most dangerous pollutants, since it contains toxicologically relevant agents, such as metals, including vanadium. Vanadium is a transition metal that is emitted into the atmosphere especially by the burning of fossil fuels to which dwellers are exposed. The objective of this literature review is to describe the toxic effects of vanadium and its compounds when they enter the body by inhalation, based especially on the results of a murine experimental model that elucidates the systemic effects that vanadium has on living organisms. To achieve this goal, we reviewed 85 articles on the relevance of vanadium as a component of particulate matter and its toxic effects. Throughout several years of research with the murine experimental model, we have shown that this element generates adverse effects in all the systems evaluated, because it causes immunotoxicity, hematotoxicity, neurotoxicity, nephrotoxicity and reprotoxicity, among other noxious effects. The results with this experimental model add evidence of the effects generated by environmental pollutants and increase the body of evidence that can lead us to make more intelligent environmental decisions for the welfare of all living beings.
Asunto(s)
Contaminantes Atmosféricos , Síndromes de Neurotoxicidad , Administración por Inhalación , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Animales , Combustibles Fósiles , Ratones , Material Particulado/análisis , Material Particulado/toxicidad , Vanadio/toxicidadRESUMEN
The high prevalence of allergy to ß-lactam antibiotics is a worldwide issue. Accuracy of diagnostic methods is important to prove tolerance or allergy, with skin test considered the best validated in vivo method for diagnosing immediate reactions to ß-lactams. Although drug provocation test is the reference standard, it cannot be performed in highly risk reactions or in those with positive skin tests. For skin tests, the inclusion of major and minor determinants of benzylpenicillin (BP) is recommended. Commercial skin test reagents have changed along time, including as minor determinants benzylpenicillin, benzylpenicilloate (BPO), and benzylpenilloate (PO). Major determinants consists of multivalent conjugates of benzylpenicilloyl coupled through amide bond to a carrier polymer, such as penicilloyl-polylysine (PPL) or benzylpenicilloyl-octalysine (BP-OL). The chemical stability of such reagents has influenced the evolution of the composition of the commercial kits, as this requirement is necessary for improving the quality and standardization of the product. In this work, we provide a detailed study of the chemical stability of BP determinants. We observed that those structures suffer from an epimerization process in C-5 at different rates. Butylamine-Benzylpenicilloyl conjugates (5R,6R)-Bu-BPO and (5S,6R)-Bu-BPO were selected as a simple model for mayor determinant to evaluate the role of the different epimers in the immunoreactivity with sera from penicillin-allergic patients. In vitro immunoassays indicate that any change in the chemical structure of the antigenic determinant of BP significantly affects IgE recognition. The inclusion of stereochemically pure compounds or mixtures may have important implications for both the reproducibility and sensitivity of in vivo and in vitro diagnostic tests.
RESUMEN
The use of aminals in dynamic covalent chemistry is slightly underexplored, probably due to their inherent instability. Here we report the spontaneous [2+2] macrocyclization of tetrakis(aminals). Their unexpected stability and structural modularity, the dynamic nature of the connections and their water tolerance make them appealing systems for future applications as stimulus-responsive materials.
RESUMEN
Iron-reducing bacteria (IRB) are crucial for electron transfer in anaerobic soil microsites. The utilization of the energy gathered by this mechanism by decomposers of organic matter is a challenging and fascinating issue. We hypothesized that bacteria reducing Fe(III) (oxyhydr)oxides to soluble Fe(II) obtain electrons from reduced soil organic matter (SOMr) involving lignin oxidation. Iron-reducing bacteria were isolated from topsoils of various climates (humid temperate, cold temperate, subpolar), vegetation types (mostly grasslands and forests), and derived from various parent materials treatments assigned as Granitic, Volcanic-allophanic, Fluvio-glacial, Basaltic-Antarctic and Metamorphic. After the screening of IRB by phospholipid fatty acid (PLFA) analysis and PCR identification (full-length 16S rDNA), the IRB were inoculated to 20 samples (five soils and 4 replicates) and a broad range of parallel processes were traced. Geobacter metallireducens and Geobacter lovleyi were the main Geobacteraceae-strains present in all soils and strongly increased the activity of ligninolytic enzymes: lignin peroxidase and manganese peroxidase. Carbon dioxide (CO2) released from IRB-inoculated soils was 140% higher than that produced by Fenton reactions (induced by H2O2 and Fe(II) addition) but 40% lower than in non-sterile soils. CO2 release was closely correlated with the produced Fe (II) and H2O2 consumption. The highest CO2 was released from Basaltic-Antarctic soils with the highest Fe content and was closely correlated with lignin depolymerization (detection by fluorescence images). All IRB oxidized the lignin contained in the SOM within a wide pH range and in soils from all parent materials. We present a conceptual model showing electron shuttling from SOM containing lignin (as a C and energy source) to IRB to produce energy and promote Fe(III) (oxyhydr)oxides reduction was proposed and discussed.
Asunto(s)
Lignina , Suelo , Regiones Antárticas , Bacterias , Electrones , Geobacter , Peróxido de Hidrógeno , Hierro , Oxidación-ReducciónRESUMEN
The combination of two two-photon-induced processes in a Förster resonance energy transfer (FRET)-operated photochromic fluorene-dithienylethene dyad lays the foundation for the observation of a quartic dependence of the fluorescence signal on the excitation light intensity. While this photophysical behavior is predicted for a four-photon absorbing dye, the herein proposed approach opens the way to use two-photon absorbing dyes, reaching the same performance. Hence, the spatial resolution limit, being a critical parameter for applications in fluorescence imaging or data storage with common two-photon absorbing dyes, is dramatically improved.
RESUMEN
Novel pH probes based on 2-(6-methoxynaphthalen-2-yl)-3,3-dimethyl-3H-indole have been synthesized and characterized. These compounds display excellent "off-on" fluorescence responses to acidic pH especially under two-photon (TP) excitation conditions as well as strong selectivity and sensitivity toward H+. These features are supported by fluorescence quantum yields over 35%, TP cross sections â¼60 GM, and good resistance to photodegradation under acidic conditions. The synthetic versatility of this model allows subcellular targets to be tuned through minor scaffold modifications without affecting its optical characteristics. The effectiveness of the probes' innate photophysical properties and the structural modifications for different pH-related applications are demonstrated in mouse embryonic fibroblast cells.
Asunto(s)
Técnicas Biosensibles/métodos , Colorantes Fluorescentes/uso terapéutico , Humanos , Concentración de Iones de Hidrógeno , FotonesRESUMEN
A series of donor-π-acceptor-π-donor (D-π-A-π-D) benzoazole dyes with 2H-benzo[d][1,2,3]triazole or BTD cores have been prepared and their photophysical properties characterized. The properties of these compounds display remarkable differences, mainly as a result of the electron-donor substituent. Dyes with the best properties have visible-light absorption over λ=400â nm, large Stokes shifts in the range of about 3500-6400â cm-1 , and good fluorescence emission with quantum yields of up to 0.78. The two-photon absorption properties were also studied to establish the relationship between structure and properties in the different compounds synthesized. These results provided cross sections of up to 1500â GM, with a predominance of S2 âS0 transitions and a high charge-transfer character. Time-dependent DFT calculations supported the experimental results.
RESUMEN
Herein, we present an easy and efficient synthesis of amino terminal dendrons, combining protection/deprotection reactions with copper-catalyzed azide alkyne cycloaddition in a convergent way. This new approach affords dendrons in gram scale with excellent yields and easy purification. By choosing the appropriate azido-functionalized core, these dendrons lead to a more efficient and controlled convergent synthesis of dendrimers with different sizes and shapes and multivalence. The amino terminal dendrimers were analyzed by diffusion-ordered spectroscopy experiments. The observed dendrimer size is in excellent correlation with the expected size and shape by molecular dynamic simulations. The construction of these kinds of nanostructures, in a simple and efficient way, opens new opportunities for biomedical applications. Moreover, by choosing the appropriate core, these versatile macromolecules become an excellent fluorescent biomarker.
Asunto(s)
Dendrímeros/química , Dendrímeros/síntesis química , Alquinos/química , Azidas/química , Biomarcadores/química , Catálisis , Cobre/química , Reacción de Cicloadición , Simulación de Dinámica Molecular , Estructura Molecular , Tamaño de la PartículaRESUMEN
BACKGROUND: Selective reactions to clavulanic acid (CLV) account for around 30% of immediate reactions after administration of amoxicillin-CLV. Currently, no immunoassay is available for detecting specific IgE to CLV, and its specific recognition in patients with immediate reactions has only been demonstrated by basophil activation testing, however with suboptimal sensitivity. The lack of knowledge regarding the structure of the drug that remains bound to proteins (antigenic determinant) is hampering the development of in vitro diagnostics. We aimed to identify the antigenic determinants of CLV as well as to evaluate their specific IgE recognition and potential role for diagnosis. METHODS: Based on complex CLV degradation mechanisms, we hypothesized the formation of two antigenic determinants for CLV, AD-I (N-protein, 3-oxopropanamide) and AD-II (N-protein, 3-aminopropanamide), and designed different synthetic analogs to each one. IgE recognition of these structures was evaluated in basophils from patients with selective reactions to CLV and tolerant subjects. In parallel, the CLV fragments bound to proteins were identified by proteomic approaches. RESULTS: Two synthetic analogs of AD-I were found to activate basophils from allergic patients. This determinant was also detected bound to lysines 195 and 475 of CLV-treated human serum albumin. One of these analogs was able to activate basophils in 59% of patients whereas CLV only in 41%. Combining both results led to an increase in basophil activation in 69% of patients, and only in 12% of controls. CONCLUSION: We have identified AD-I as one CLV antigenic determinant, which is the drug fragment that remains protein-bound.
Asunto(s)
Ácido Clavulánico/inmunología , Epítopos/inmunología , Hipersensibilidad Inmediata/diagnóstico , Hipersensibilidad Inmediata/inmunología , Inmunoglobulina E/inmunología , Basófilos/inmunología , Basófilos/metabolismo , Cromatografía Liquida , Ácido Clavulánico/efectos adversos , Ácido Clavulánico/química , Epítopos/química , Humanos , Inmunoglobulina E/sangre , Modelos Moleculares , Conformación Molecular , Curva ROC , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Espectrometría de Masas en TándemRESUMEN
Dendrimeric Antigens (DeAns) consist of dendrimers decorated with multiple units of drug antigenic determinants. These conjugates have been shown to be a powerful tool for diagnosing penicillin allergy using in vitro immunoassays, in which they are recognized by specific IgE from allergic patients. Here we propose a new diagnostic approach using DeAns in cellular tests, in which recognition occurs through IgE bound to the basophil surface. Both IgE molecular recognition and subsequent cell activation may be influenced by the tridimensional architecture and size of the immunogens. Structural features of benzylpenicilloyl-DeAn and amoxicilloyl-DeAn (G2 and G4 PAMAM) were studied by diffusion Nuclear Magnetic Resonance (NMR) experiments and are discussed in relation to molecular dynamics simulation (MDS) observations. IgE recognition was clinically evaluated using the basophil activation test (BAT) for allergic patients and tolerant subjects. Diffusion NMR experiments, MDS and cellular studies provide evidence that the size of the DeAn, its antigen composition and tridimensional distribution play key roles in IgE-antigen recognition at the effector cell surface. These results indicate that the fourth generation DeAns induce a higher level of basophil activation in allergic patients. This approach can be considered as a potential complementary diagnostic method for evaluating penicillin allergy.
Asunto(s)
Alérgenos/química , Alérgenos/inmunología , Basófilos/inmunología , Hipersensibilidad a las Drogas/diagnóstico , Hipersensibilidad a las Drogas/inmunología , Epítopos/química , Epítopos/inmunología , Dendrímeros , Humanos , Inmunoensayo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Penicilinas/química , Penicilinas/inmunología , Relación Estructura-ActividadRESUMEN
Bis(dioxaborine) dyes of the A-π-A format (A: acceptor, π: conjugated bridge) were prepared and photophysically characterized. The best performing dyes feature (a)â visible-light absorption (>400â nm), (b)â high molar absorption coefficients (up to 70000 m-1 â cm-1 ), (c)â Stokes shifts in the range of ca. 2500-5800â cm-1 , and (d)â strong fluorescence emission with quantum yields of up to 0.74. This yields very bright-emitting dyes for one-photon excitation. However, the most intriguing feature of the dyes is their strong two-photon absorption. This was achieved by means of increased π-conjugation in the phenylene or phenylene-thiophene bridges through the variation of the conjugation length and rigidity. This provided two-photon absorption cross sections of up to 2800â GM (1 Goeppert-Mayer (GM)=10-50 â cm4 s photon-1 ). Considering the mentioned high fluorescence quantum yields, exceptionally bright-emitting A-π-A two-photon absorbing dyes with low molecular mass are obtained. Time-dependent density-functional theory calculations corroborated the experimental results.
RESUMEN
La enfermedad tiroidea representa un riesgo de morbilidad obstétrica durante la gestación; afecta el desarrollo fetal y los resultados en la vida postnatal. Sin embargo las distintas guías de manejo no recomiendan el tamizaje tiroideo. En este artículo se presenta una revisión de la literatura disponible en los últimos 5 años con respecto a la patología tiroidea y su asociación con los resultados perinatales y obstétricos adversos. Los hallazgos muestran que el hipertiroidismo no representa actualmente un objeto de discusión en cuanto al diagnóstico y al manejo. Por otra parte, el hipotiroidismo afecta aproximadamente el 3-5% de los embarazos y el tipo subclínico corresponde al 80% de ellos, siendo hoy el elemento principal de la controversia, debido a la posibilidad de que existan un grupo de pacientes subclínicas que se comportarían como hipotiroideas clínicas y para las cuales se hace necesario ajustar los parámetros diagnósticos y de manejo.
Thyroid disease represents a risk of obstetric morbidity to the course of pregnancies; affects fetal development and the results in the postnatal period. However actual guidelines do not approve universal screening. This article reviews the available information about thyroid disease and its relationship with adverse perinatal and obstetrics results. Actual findings show that hyprthyroidism does not represent a point of discussion about diagnosis and management. On the other hand, hypothyroidism affects 3-5% of pregnancies aproximally and the subclinical type represents 80% of them, being today the key element of controversy, due to the possibility that there is a group of subclinical patients that will act as clinical hypothyroidism and for whom it is necessary and adjustment to current guidelines and diagnostic criteria.