RESUMEN
Sentence comprehension involves maintaining and continuously integrating linguistic information and, thus, makes demands on working memory (WM). Past research has demonstrated that semantic WM, but not phonological WM, is critical for integrating word meanings across some distance and resolving semantic interference in sentence comprehension. Here, we examined the relation between phonological and semantic WM and the comprehension of center-embedded relative clause sentences, often argued to make heavy demands on WM. Additionally, we examined the relation between phonological and semantic WM and the comprehension of transitive and dative active and passive sentences, which may also draw on WM resources depending on the number of propositions that must be maintained and the difficulty of processing passive clauses. In a large sample of individuals with aphasia (N = 56), we assessed whether comprehension performance on more complex vs. simpler active-passive or embedded relative clause sentences would be predicted by semantic but not phonological WM when controlling for single word comprehension. For performance on the active-passive comprehension task, we found that semantic WM, but not phonological WM, predicted comprehension of dative sentences when controlling for comprehension of transitive sentences. We also found that phonological WM, but not semantic WM, predicted mean comprehension for reversible active-passive sentences when controlling for trials with lexical distractors. On the relative clause comprehension task, consistent with prior results, we found that semantic WM, but not phonological WM, predicted comprehension of object relative clause sentences and relative clause sentences with a passive construction. However, both phonological WM and semantic WM predicted mean comprehension across all relative clause types for reversible trials when controlling for trials with lexical distractors. While we found evidence of semantic WM's role in comprehension, we also observed unpredicted relations between phonological WM and comprehension in some conditions. Post-hoc analyses provided preliminary evidence that phonological WM maintains a backup phonological representation of the sentence that may be accessed when sentence comprehension processing is less efficient. Future work should investigate possible roles that phonological WM may play across sentence types.