Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38893384

RESUMEN

Analysis of the heavy fractions in crude oil has been important in petroleum industries. It is well known that heavy fractions such as vacuum gas oils (VGOs) include heteroatoms, of which sulfur and nitrogen are often characterized in many cases. We conducted research regarding the molecular species analysis of VGOs. Further refine processes using VGOs are becoming important when considering carbon recycling. In this work, we attempted to classify compounds within VGOs provided by Kuwait Institute for Scientific Research. Two VGOs were priorly distillated from Kuwait Export crude and Lower Fars crude. Quantitative analysis was performed mainly using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOFMS). MALDI-TOF-MS has been developed for analyzing high-molecular-weight compounds such as polymer and biopolymers. As matrix selection is one of the most important aspects in MALDI-TOFMS, the careful selection of a matrix was firstly evaluated, followed by analysis using a Kendrick plot with nominal mass series (z*). The objective was to evaluate if this work could provide an effective classification of VGOs compounds. The Kendrick plot is a well-known method for processing mass data. The difference in the Kendrick mass defect (KMD) between CnH2n-14S and CnH2n-20O is only 0.0005 mass units, which makes it difficult in general to distinguish these compounds. However, since the z* value showed effective differences during the classification of these compounds, qualitative analysis could be possible. The analysis using nominal mass series showed the potential to be used as an effective method in analyzing heavy fractions.

2.
Angew Chem Int Ed Engl ; 62(41): e202308284, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37615930

RESUMEN

Switching of multiple physical properties by external stimuli in dynamic materials enables applications in, e.g., smart sensors, biomedical tools, as well as data-storage devices. Among stimuli-responsive materials, inorganic-organic molecular hybrids exhibiting thermal order-disorder phase transitions were tested as promising molecular switches of electrical characteristics, including dielectric constant. We aimed at broadening the multifunctional potential of such hybrid materials towards the switching of not only electrical but also other physical properties, e.g., light emission. We report two ionic salts based on luminescent tetracyanidonitridorhenate(V) anions bearing two different diamine ligands, 1,2-diaminoethane (1) and 1,3-diaminopropane (2), both crystallizing with polar N-methyl-dabconium cations. They exhibit an order-disorder phase transition related to the heating-induced turning-on of the rotation of polar cations. This leads to a unique synchronous switching of the dielectric constant as well as metal-complex-centered photoluminescence, as demonstrated by changes in, e.g., emission lifetime. The roles of organic cations, non-trivial Re(V) complexes, and their interaction in achieving the coupled thermal switching of electrical and optical properties are discussed utilizing experimental and theoretical approaches.

3.
Inorg Chem ; 62(7): 3278-3287, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36734995

RESUMEN

Research on isomers is highly desirable due to their prospective role in better understanding of physicochemical properties of similar systems and further development of multifunctional molecular materials. Iron(II) and tetra(thiocyanato)mercury(II) ions self-assembled in the presence of 2-acetylpyridine (2-acpy) excess to form two {[Fe(2-acpy)][Hg(µ-SCN)4]}n isomers: two-dimensional (2D) centrosymmetric layers with folded ring structural motifs (1) and three-dimensional (3D) chiral networks with right- or left-handed {···Fe-NCS-Hg-SCN···}∞ helixes (2). New methods of designing and synthesizing functional thiocyanate-bridged materials have been proposed. In addition, the similarity between 1 and 2 allowed for the description of subtle changes in IR and UV-visible spectra. Moreover, 2 shows spontaneous resolution, and it crystallizes in the noncentrosymmetric space group P21, leading to the occurrence of nonlinear optical activity in circular dichroism studies and second harmonic generation (SHG). At room temperature, the SH susceptibility for powder sample 2 reached 6.0 × 10-11 esu. Ab initio calculations indicated the electric polarization vector and the crystallographic twofold screw axis pass through the aromatic ring. Magnetic studies for 1 and 2 revealed high-spin iron(II) with zero-field splitting at low temperatures. Analysis of magnetic data gave |D| = 37.45 cm-1, |E/D| = 5.59 cm-1, and ⟨g⟩ = 2.15 for 1, |D| = 36.78 cm-1, |E/D| = 4.92 cm-1, and ⟨g⟩ = 2.18 for 2, and information about the orientation of magnetic anisotropy vectors for both compounds.

4.
Angew Chem Int Ed Engl ; 62(7): e202214673, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36522797

RESUMEN

Self-assembly FeII complexes of phenazine (Phen), quinoxaline (Qxn), and 4,4'-trimethylenedipyridine (Tmp) with tetrahedral building blocks of [HgII (XCN)4 ]2- (X=S or Se) formed six new high-dimensional frameworks with the general formula of [Fe(L)m ][Hg(XCN)4 ]⋅solvents (L=Phen, m/X=2/S, 1; L=Qxn, m/X=2/S, 2; L=Qxn, m/X=1/S, 3; L=Qxn, m/X=1/Se, 3-Se; L=Tmp, m/X=1/S, 4; and L=Tmp, m/X=1/Se, 4-Se). 1, 3, and 3-Se show an intense sub-terahertz (sub-THz) absorbance of around 0.60 THz due to vibrations of the solvent molecules coordinated to the FeII ions and crystallization organic molecules. In addition, crystals of 1, 4, and 4-Se display low-frequency Raman scattering with exceptionally low values of 0.44, 0.51, and 0.53 THz, respectively. These results indicate that heavy metal FeII -HgII systems are promising platforms to construct sub-THz absorbers.

5.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682730

RESUMEN

Molecular vibrations in the solid-state, detectable in the terahertz (THz) region, are the subject of research to further develop THz technologies. To observe such vibrations in terahertz time-domain spectroscopy (THz-TDS) and low-frequency (LF) Raman spectroscopy, two supramolecular assemblies with the formula [NdIII (phen)3 (NCX)3] 0.3EtOH (X = S, 1-S; Se, 1-Se) were designed and prepared. Both compounds show several THz-TDS and LF-Raman peaks in the sub-THz range, with the lowest frequencies of 0.65 and 0.59 THz for 1-S and 1-Se, and 0.75 and 0.61 THz for 1-S and 1-Se, respectively. The peak redshift was observed due to the substitution of SCN- by SeCN-. Additionally, temperature-dependent TDS-THz studies showed a thermal blueshift phenomenon, as the peak position shifted to 0.68 THz for 1-S and 0.62 THz for 1-Se at 10 K. Based on ab initio calculations, sub-THz vibrations were ascribed to the swaying of the three thiocyanate/selenocyanate. Moreover, both samples exhibited near-infrared (NIR) emission from Nd (III), and very good thermometric properties in the 300-150 K range, comparable to neodymium (III) oxide-based thermometers and higher than previously reported complexes. Moreover, the temperature dependence of fluorescence and THz spectroscopy analysis showed that the reduction in anharmonic thermal vibrations leads to a significant increase in the intensity and a reduction in the width of the emission and LF absorption peaks. These studies provide the basis for developing new routes to adjust the LF vibrational absorption.


Asunto(s)
Luminiscencia , Espectroscopía de Terahertz , Espectrometría Raman , Temperatura , Vibración
6.
RSC Adv ; 12(5): 2558-2563, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35425304

RESUMEN

Activated carbon is a suitable adsorbent for adsorption heat pumps (AHPs) with ethanol refrigerants. Although chemically activated carbon with highly developed pore structures exhibits good ethanol adsorption, the associated high production costs inhibit its practical application as an AHP adsorbent. Moreover, although physical activation can produce inexpensive activated carbon, the limited pore development limits the ethanol uptake. Recently, we developed a pressurized physical activation method that can produce activated carbon with a well-developed pore structure and characteristic pore size distribution. In this study, we investigated the applicability of the pressurized physically activated carbon as an adsorbent in activated carbon-ethanol AHP systems. Because of the large number of pressurization-induced pores of appropriate size, the pressurized physically activated carbon showed effective ethanol uptake comparable with that of chemically activated carbon on a weight basis. Furthermore, on a volume basis, the pressurized physically activated carbon, with a high bulk density, showed much higher effective ethanol uptake than chemically activated carbon. These results confirm the potential of the pressurized physically activated carbon as a relatively inexpensive high-performance adsorbent for AHP systems with ethanol refrigerants.

7.
Angew Chem Int Ed Engl ; 61(20): e202201265, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35182087

RESUMEN

Gold complexes can generate excimers ([Au2 ]→[Au2 ]*) and exciplexes ([Au3 ]→[Au3 ]*) with light excitation. Four GdIII and YIII complexes were assembled with dimeric {[Au(SCN)2 ]- }2 and trimeric {[Au(SCN)2 ]- }3 bis(thiocyanato)gold(I) counterions. The vibrational signature associated with the Au⋅⋅⋅Au vibrational mode was probed with ultralow frequency (ULF) Raman spectroscopy as a function of temperature. Emission spectroscopy was used to explore photophysical properties. Two broad features in the high- and low-energy regions were associated with the fluorescence and phosphorescence of the gold entities, respectively. Temperature-dependent luminescence measurements showed that the emission color can be tuned from blue to green via cyan and white. Hence, these complexes can act as colorimetric thermometers. Additionally, a ratiometric thermal sensing ability was incorporated with high sensitivity up to 5 % K-1 in the cryogenic temperature range.

8.
Inorg Chem ; 60(16): 12009-12019, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34318670

RESUMEN

One-dimensional zigzag cyanido-bridged coordination polymers have been prepared as a result of self-assembly of lanthanide(III) ions with octacyanidotungstate(V) anions in the presence of N,N-dimethylacetamide (dma). All compounds crystallized in noncentrosymmetric space group P21 with a molecular formula of [LnIII(dma)5][WV(CN)8] [Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5), Tm (6), Yb (7), Lu (8), or Y (9)]. Magnetic studies revealed weak antiferromagnetic interactions through LnIII-NC-WV bridges and the formation of ferrimagnetically coupled chains at very low temperatures. Moreover, temperature dependencies of magnetic susceptibilities were fitted using the crystal field parameters for Ln(III) ions, determined by the ab initio calculations, yielding magnetic coupling constants in the range of -1 to -5 cm-1. The wide optical transparency of 1-9 has been determined using solid state absorption spectroscopy. Samples exhibited second harmonic (SH) generation properties with SH susceptibilities ranging from 4.7 × 10-12 to 9.4 × 10-11 esu due to the presence of nonlinear optical susceptibility tensor elements (χijk) χzxx, χzyy, χzzz, χzxy, χyyz, χyzx, χxyz, and χxzx, corresponding to space group P21. The determined values were also compared with the results of theoretical calculations and previous reports, indicating a potential relationship between the type of lanthanide ion and the SH intensity.

9.
Dalton Trans ; 50(24): 8524-8532, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34075991

RESUMEN

Incorporating chiral organic ligands into cyanido-bridged FeII-NbIV assemblies synthesized chiral spin-crossover complexes, FeII2[NbIV(CN)8](L)8·6H2O (L = R-, S-, or rac-1-(3-pyridyl)ethanol: R-FeNb, S-FeNb, or rac-FeNb). Rietveld analyses based on a racemic complex of rac-FeNb indicate that the chiral complexes have a cubic crystal structure in the I213 space group with a three-dimensional cyanido-bridged FeII-NbIV coordination network. All the complexes exhibit spin crossover between the high-spin (HS) and the low-spin (LS) FeII states without thermal hysteresis. Chiral complexes of R-FeNb and S-FeNb show second harmonic generation (SHG) due to their non-centrosymmetric structure. The I213 space group provides second-order susceptibility tensor elements of χxyz, χyzx, and χzxy, which contribute to SHG. The temperature-dependent second harmonic light intensity change is due to spin crossover between FeIIHS and FeIILS.

10.
Angew Chem Int Ed Engl ; 60(5): 2330-2338, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33124080

RESUMEN

Bistable and stimuli-responsive molecule-based materials are promising candidates for the development of molecular switches and sensors for future technologies. The CN-bridged {NH4 [Ni(cyclam)][Fe(CN)6 ]⋅5 H2 O}n chain exists in two valence states: NiII -FeIII (1HT ) and NiIII -FeII (1LT ) and shows unique multiresponsivity under ambient conditions to various stimuli, including temperature, pressure, light, and humidity, which generate measurable response in the form of significant changes in magnetic susceptibility and color. The electron-transfer phase transition 1LT ↔1HT shows room-temperature thermal hysteresis, can be induced by irradiation, and shows high sensitivity to small applied pressure, which shifts it to higher temperatures. Additionally, it can be reversibly turned off by dehydration to the {NH4 [NiII (cyclam)][FeIII (CN)6 ]}n (1 d) phase, which features the NiII -FeIII valence state over the whole temperature range, but responds to pressure by yielding NiIII -FeII above 1.06 GPa.

11.
J Obstet Gynaecol Res ; 47(4): 1253-1255, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33354868

RESUMEN

A screening of coronavirus disease 2019 (COVID-19) polymerase chain reaction (PCR) tests using saliva for pregnant women and their partners was performed at all 12 maternity facilities located in Himeji city between May 29 and September 5, 2020. Pregnant women at 37 or more weeks of gestation or who experienced threatened labor and their partners who cared for an infant underwent a saliva PCR test with informed consent. As a result, all of 1475 pregnant women and 1343 partners tested negative for COVID-19 PCR. There were no cases of false positive or false negative PCR tests. This cohort study revealed for the first time that a screening of COVID-19 PCR tests using saliva may be useful to sustain perinatal medical care during the pandemic period in Japan.


Asunto(s)
COVID-19/diagnóstico , Complicaciones Infecciosas del Embarazo/diagnóstico , SARS-CoV-2/aislamiento & purificación , Saliva/virología , Estudios de Cohortes , Programas de Detección Diagnóstica , Reacciones Falso Negativas , Reacciones Falso Positivas , Femenino , Humanos , Japón , Masculino , Atención Perinatal , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esposos
12.
Front Chem ; 8: 564, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850618

RESUMEN

Structure and properties of an inorganic perovskite Cs2SnI6 demonstrated its potential as a light-harvester or electron-hole transport material; however, its optoelectronic properties are poorer than those of lead-based perovskites. Here, we report the way of light tuning of absorption and transport properties of cesium iodostannate(IV) Cs2SnI6 via partial heterovalent substitution of tin for indium. Light absorption and optical bandgaps of materials have been investigated by UV-vis absorption and photoluminescent spectroscopies. Low-temperature electron paramagnetic resonance spectroscopy was used to study the kind of paramagnetic centers in materials.

13.
Angew Chem Int Ed Engl ; 59(36): 15741-15749, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32485003

RESUMEN

A two-step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3-CNpy)2 ][Re(CN)8 ]}⋅H2 O (1) (3-CNpy=3-cyanopyridine) assembly consisting of cyanido-bridged FeII -ReV square grid sheets bonded by Cs+ ions. The presence of two non-equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non-covalent interlayer interactions involving Cs+ , [ReV (CN)8 ]3- ions, and 3-CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin-transition phenomenon could be tuned by an external pressure giving the room-temperature range of SCO, as well as by visible-light irradiation, inducing an efficient recovery of the high-spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect.

14.
J Am Chem Soc ; 142(8): 3970-3979, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32017548

RESUMEN

Lanthanide(III)-based coordination complexes have been explored as a source of bifunctional molecular materials combining Single-Molecule Magnet (SMM) behavior with visible-to-near-infrared photoluminescence. In pursuit of more advanced multifunctionality, the next target is to functionalize crystalline solids based on emissive molecular nanomagnets toward high proton conductivity and an efficient luminescent thermometric effect. Here, a unique multifunctional molecule-based material, (H5O2)2(H)[YbIII(hmpa)4][CoIII(CN)6]2·0.2H2O (1, hmpa = hexamethylphosphoramide), composed of molecular {YbCo2}3- anions noncovalently bonded to acidic H5O2+ and H+ ions, is reported. The resulting YbIII complexes present a slow magnetic relaxation below 6 K and room temperature NIR 4f-centered photoluminescence sensitized by [Co(CN)6]3- ions. The microporous framework, built on these emissive magnetic molecules, exhibits a high proton conductivity of the H-hopping mechanism reaching σ of 1.7 × 10-4 S·cm-1 at 97% relative humidity, which classifies 1 as a superionic conductor. Moreover, the emission pattern is strongly temperature-dependent which was utilized in achieving a highly sensitive single-center luminescent thermometer with a relative thermal sensitivity, Sr > 1% K-1 in the 50-175 K range. This work shows an unprecedented combination of magnetic, optical, and electrical functionalities in a single phase working as a proton conductive NIR-emissive thermometer based on Single-Molecule Magnets.

15.
Polymers (Basel) ; 12(2)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033250

RESUMEN

Pure, highly chlorinated polyvinyl chloride (CPVC), with a 63 wt % of chlorine, showed a unique-thermal-pyrolytic-phenomenon that meant it could be converted to carbon material through solid-phase carbonisation rather than liquid-phase carbonisation. The CPVC began to decompose at 270 °C, with a rapid loss in mass due to dehydrochlorination and novel aromatisation and polycondensation up to 400 °C. In this study, we attempted to prepare carbon fibre (CF) without oxidative stabilisation, using the aforementioned CPVC as a novel precursor. Through the processes of solution spinning and solid-state carbonisation, the spun CPVC fibre was directly converted to CF, with a carbonisation yield of 26.2 wt %. The CPVC-derived CF exhibited a relatively smooth surface; however, it still demonstrated a low mechanical performance. This was because the spun fibre was not stretched during the heat treatment. Tensile strength, Young's modulus and elongation values of 590 ± 84 MPa, 50 ± 8 GPa, and 1.2 ± 0.2%, respectively, were obtained from the CPVC spun fibre, with an average diameter of 19.4 µm, following carbonisation at 1600 °C for 5 min.

16.
Chem Sci ; 11(33): 8989-8998, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34123153

RESUMEN

Atomic vibrations due to stretching or bending modes cause optical phonon modes in the solid phase. These optical phonon modes typically lie in the frequency range of 102 to 104 cm-1. How much can the frequency of optical phonon modes be lowered? Herein we show an extremely low-frequency optical phonon mode of 19 cm-1 (0.58 THz) in a Rb-intercalated two-dimensional cyanide-bridged Co-W bimetal assembly. This ultralow frequency is attributed to a millefeuille-like structure where Rb ions are very softly sandwiched between the two-dimensional metal-organic framework, and the Rb ions slowly vibrate between the layers. Furthermore, we demonstrate temperature-induced and photo-induced switching of this low-frequency phonon mode. Such an external-stimulation-controllable sub-terahertz (sub-THz) phonon crystal, which has not been reported before, should be useful in devices and absorbers for high-speed wireless communications such as beyond 5G or THz communication systems.

17.
Chem Sci ; 12(2): 730-741, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34163806

RESUMEN

Coordination complexes of lanthanide(3+) ions can combine Single-Molecule Magnetism (SMM) with thermally modulated luminescence applicable in optical thermometry. We report an innovative approach towards high performance SMM-based optical thermometers which explores tunable anisotropy and the luminescence re-absorption effect of HoIII complexes. Our concept is shown in dinuclear cyanido-bridged molecules, {[HoIII(4-pyridone)4(H2O)2][MIII(CN)6]}·nH2O (M = Co, 1; Rh, 2; Ir, 3) and their magnetically diluted analogues, {[HoIII x YIII 1-x (4-pyridone)4(H2O)2][MIII(CN)6]}·nH2O (M = Co, x = 0.11, 1@Y; Rh, x = 0.12, 2@Y; Ir, x = 0.10, 3@Y). They are built of pentagonal bipyramidal HoIII complexes revealing the zero-dc-field SMM effect. Experimental studies and the ab initio calculations indicate an Orbach magnetic relaxation with energy barriers varying from 89.8 to 86.7 and 78.7 cm-1 K for 1, 2, and 3, respectively. 1-3 also differ in the strength of quantum tunnelling of magnetization which is suppressed by hyperfine interactions, and, further, by the magnetic dilution. The YIII-based dilution governs the optical properties as 1-3 exhibit poor emission due to the dominant re-absorption from HoIII while 1@Y-3@Y show room-temperature blue emission of 4-pyridone. Within ligand emission bands, the sharp re-absorption lines of the HoIII electronic transitions were observed. Their strong thermal variation was used in achieving highly sensitive ratiometric optical thermometers whose good performance ranges, lying between 25 and 205 K, are adjustable by using hexacyanidometallates. This work shows that HoIII complexes are great prerequisites for advanced opto-magnetic systems linking slow magnetic relaxation with unique optical thermometry exploiting a luminescence re-absorption phenomenon.

18.
Polymers (Basel) ; 11(12)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31757010

RESUMEN

Oxidation-stabilization using pressurized air flows of 0.5 and 1.0 MPa could successfully shorten the total stabilization time to less than 60 min for manufacturing mesophase pitch-based carbon fibers without deteriorating mechanical performance. Notably, the carbonized fiber heat-treated at 1000 °C for 30 min, which was oxidative-stabilized at 260 °C without soaking time with a heating rate of 2.0 °C/min using 100 mL/min of pressurized air flow of 0.5 MPa (total stabilization time: 55 min), showed excellent tensile strength and Young's modulus of 3.4 and 177 GPa, respectively, which were higher than those of carbonized fiber oxidation-stabilized at 270 °C without soaking time with a heating rate of 0.5 °C/min using 100 mL/min of atmospheric air flow (total stabilization time: 300 min). Activation energies for oxidation reactions in stabilization using pressurized air flows were much lower than those of oxidation reactions using atmospheric air flow because of the higher oxidation diffusion from the outer surface into the center part of pitch fibers for the use of the pressurized air flows of 0.5 and 1.0 MPa than the atmospheric one. The higher oxygen diffusivities resulted in a more homogeneous distribution of oxygen weight uptake across the transverse section of mesophase pitch fibers, and allowed the improvement of the mechanical properties.

19.
J Am Chem Soc ; 141(45): 18211-18220, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31626543

RESUMEN

Microporous magnets compose a class of multifunctional molecule-based materials where desolvation-driven structural transformation leads to the switching of magnetic properties. Herein, we present a special type of microporous magnet where a dehydration-hydration process within a bimetal coordination framework results in the switching of emissive DyIII single-molecule magnets (SMMs). We report a three-dimensional (3-D) cyanido-bridged coordination polymer, {[DyIII(H2O)2][CoIII(CN)6]}·2.2H2O (1), and its dehydrated form of {DyIII[CoIII(CN)6]} (2), which was obtained through a reversible single-crystal-to-single-crystal transformation. Both phases are composed of paramagnetic DyIII centers alternately arranged with diamagnetic hexacyanidocobaltates(III). The hydrated phase contains eight-coordinated [DyIII(µ-NC)6(H2O)2]3- complexes of a square antiprism geometry, while the dehydrated form contains six-coordinated [DyIII(µ-NC)6]3- moieties of a trigonal prism geometry. This change in coordination geometry results in the generation of DyIII single-molecule magnets in 2, whereas slow magnetic relaxation effect is not observed for DyIII sites in 1. The D4d-to-D3h symmetry change of DyIII complexes produces also the shift of photoluminescent color from nearly white to deep yellow thanks to the modulation of emission bands of f-f electronic transitions. A combined approach utilizing dc magnetic data and low-temperature emission spectra confirmed an axial crystal field of trigonal prismatic DyIII complexes in 2, which produces an Orbach type of slow magnetic relaxation. Therefore, we present a unique route to the efficient switching of SMM behavior and photoluminescence of DyIII complexes embedded in a 3-D cyanido-bridged framework.

20.
Chemistry ; 25(51): 11820-11825, 2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31206906

RESUMEN

Three-dimensional bimetallic cyanido-bridged frameworks, [LnIII (2,2'-bipyridine N,N'-dioxide)2 (H2 O)][CuI 2 (CN)5 ]⋅5 H2 O (Ln=Dy, 1; Yb, 2), are reported. They exhibit the effect of slow relaxation of magnetization, leading to a magnetic hysteresis loop, and sensitized visible-to-near-infrared photoluminescence. Both physical properties are related to the eight-coordinated lanthanide(III) complexes embedded in the unprecedented coordination skeleton composed of symmetry-breaking polycyanidocuprate linkers. The three-dimensional d-f cyanido-bridged network was shown to serve as an efficient coordination scaffold to achieve emissive lanthanide single-molecule magnets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...