Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33998651

RESUMEN

Heterochromatin-related epigenetic mechanisms, such as DNA methylation, facilitate pairing of homologous chromosomes during the meiotic prophase of mammalian spermatogenesis. In pro-spermatogonia, de novo DNA methylation plays a key role in completing meiotic prophase and initiating meiotic division. However, the role of maintenance DNA methylation in the regulation of meiosis, especially in the adult, is not well understood. Here, we reveal that NP95 (also known as UHRF1) and DNMT1 - two essential proteins for maintenance DNA methylation - are co-expressed in spermatogonia and are necessary for meiosis in male germ cells. We find that Np95- or Dnmt1-deficient spermatocytes exhibit spermatogenic defects characterized by synaptic failure during meiotic prophase. In addition, assembly of pericentric heterochromatin clusters in early meiotic prophase, a phenomenon that is required for subsequent pairing of homologous chromosomes, is disrupted in both mutants. Based on these observations, we propose that DNA methylation, established in pre-meiotic spermatogonia, regulates synapsis of homologous chromosomes and, in turn, quality control of male germ cells. Maintenance DNA methylation, therefore, plays a role in ensuring faithful transmission of both genetic and epigenetic information to offspring.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Emparejamiento Cromosómico/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/genética , Espermatocitos/crecimiento & desarrollo , Espermatogénesis/genética , Ubiquitina-Proteína Ligasas/genética , Células Madre Germinales Adultas/citología , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética/genética , Heterocromatina/metabolismo , Masculino , Ratones , Ratones Noqueados , Espermatocitos/fisiología , Espermatogénesis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
2.
Dis Model Mech ; 12(11)2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31562139

RESUMEN

Respiratory failure is a life-threatening problem for pre-term and term infants, yet many causes remain unknown. Here, we present evidence that whey acidic protein (WAP) four-disulfide core domain protease inhibitor 2 (Wfdc2), a protease inhibitor previously unrecognized in respiratory disease, may be a causal factor in infant respiratory failure. Wfdc2 transcripts are detected in the embryonic lung and analysis of a Wfdc2-GFP knock-in mouse line shows that both basal and club cells, and type II alveolar epithelial cells (AECIIs), express Wfdc2 neonatally. Wfdc2-null-mutant mice display progressive atelectasis after birth with a lethal phenotype. Mutant lungs have multiple defects, including impaired cilia and the absence of mature club cells from the tracheo-bronchial airways, and malformed lamellar bodies in AECIIs. RNA sequencing shows significant activation of a pro-inflammatory pathway, but with low-quantity infiltration of mononuclear cells in the lung. These data demonstrate that Wfdc2 function is vitally important for lung aeration at birth and that gene deficiency likely causes failure of the lung mucosal barrier.


Asunto(s)
Insuficiencia Respiratoria/mortalidad , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular , Células Cultivadas , Cilios/fisiología , Humanos , Ratones , Ratones Endogámicos ICR , Atelectasia Pulmonar/etiología , Surfactantes Pulmonares/metabolismo
3.
Development ; 145(23)2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504434

RESUMEN

The mammalian male germline is sustained by a pool of spermatogonial stem cells (SSCs) that can transmit both genetic and epigenetic information to offspring. However, the mechanisms underlying epigenetic transmission remain unclear. The histone methyltransferase Kmt2b is highly expressed in SSCs and is required for the SSC-to-progenitor transition. At the stem-cell stage, Kmt2b catalyzes H3K4me3 at bivalent H3K27me3-marked promoters as well as at promoters of a new class of genes lacking H3K27me3, which we call monovalent. Monovalent genes are mainly activated in late spermatogenesis, whereas most bivalent genes are mainly not expressed until embryonic development. These data suggest that SSCs are epigenetically primed by Kmt2b in two distinguishable ways for the upregulation of gene expression both during the spermatogenic program and through the male germline into the embryo. Because Kmt2b is also the major H3K4 methyltransferase for bivalent promoters in embryonic stem cells, we also propose that Kmt2b has the capacity to prime stem cells epigenetically.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Germinativas/citología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Regiones Promotoras Genéticas , Espermatogonias/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Supervivencia Celular , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas del Grupo Polycomb/metabolismo
4.
Development ; 140(17): 3565-76, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23903187

RESUMEN

Epigenetic modifications influence gene expression and chromatin remodeling. In embryonic pluripotent stem cells, these epigenetic modifications have been extensively characterized; by contrast, the epigenetic events of tissue-specific stem cells are poorly understood. Here, we define a new epigenetic shift that is crucial for differentiation of murine spermatogonia toward meiosis. We have exploited a property of incomplete cytokinesis, which causes male germ cells to form aligned chains of characteristic lengths, as they divide and differentiate. These chains revealed the stage of spermatogenesis, so the epigenetic differences of various stages could be characterized. Single, paired and medium chain-length spermatogonia not expressing Kit (a marker of differentiating spermatogonia) showed no expression of Dnmt3a2 and Dnmt3b (two de novo DNA methyltransferases); they also lacked the transcriptionally repressive histone modification H3K9me2. By contrast, spermatogonia consisting of ~8-16 chained cells with Kit expression dramatically upregulated Dnmt3a2/3b expression and also displayed increased H3K9me2 modification. To explore the function of these epigenetic changes in spermatogonia in vivo, the DNA methylation machinery was destabilized by ectopic Dnmt3b expression or Np95 ablation. Forced Dnmt3b expression induced expression of Kit; whereas ablation of Np95, which is essential for maintaining DNA methylation, interfered with differentiation and viability only after spermatogonia become Kit positive. These data suggest that the epigenetic status of spermatogonia shifts dramatically during the Kit-negative to Kit-positive transition. This shift might serve as a switch that determines whether spermatogonia self-renew or differentiate.


Asunto(s)
Diferenciación Celular/fisiología , Epigénesis Genética/fisiología , Células Germinativas/fisiología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Espermatogénesis/fisiología , Espermatogonias/crecimiento & desarrollo , Animales , Western Blotting , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/fisiología , Cartilla de ADN/genética , Citometría de Flujo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Espermatogonias/citología , ADN Metiltransferasa 3B
5.
Mech Dev ; 130(11-12): 519-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23892084

RESUMEN

Lysine methylation of the histone tail is involved in a variety of biological events. G9a and GLP are known as major H3-K9 methyltransferases and contribute to transcriptional silencing. The functions of these genes in organogenesis remain largely unknown. Here, we analyzed the phenotypes of cardiomyocyte specific GLP knockout and G9a knockdown (GLP-KO/G9a-KD) mice. The H3-K9 di-methylation level decreased markedly in the nuclei of the cardiomyocytes of GLP-KO/G9a-KD mice, but not single G9a or GLP knockout mice. In addition, GLP-KO/G9a-KD mice showed neonatal lethality and severe cardiac defects (atrioventricular septal defects, AVSD). We also showed that hypoplasia in the atrioventricular cushion, which is a main part of the atrioventricular septum, caused AVSD. Expression analysis revealed downregulation of 2 AVSD related genes and upregulation of several non-cardiac specific genes in the hearts of GLP-KO/G9a-KD mice. These data indicate that G9a and GLP are required for sufficient H3-K9 di-methylation in cardiomyocytes and regulation of expression levels in multiple genes. Moreover, our findings show that G9a and GLP have an essential role in normal morphogenesis of the atrioventricular septum through regulation of the size of the atrioventricular cushion.


Asunto(s)
Tabique Interatrial/enzimología , Defectos de los Tabiques Cardíacos/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Morfogénesis/genética , Animales , Tabique Interatrial/embriología , Tabique Interatrial/patología , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Ingeniería Genética , Defectos de los Tabiques Cardíacos/embriología , Defectos de los Tabiques Cardíacos/enzimología , Defectos de los Tabiques Cardíacos/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Recombinación Homóloga , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Transducción de Señal
6.
Development ; 138(9): 1771-82, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21447557

RESUMEN

In general, cell proliferation and differentiation show an inverse relationship, and are regulated in a coordinated manner during development. Embryonic cardiomyocytes must support embryonic life by functional differentiation such as beating, and proliferate actively to increase the size of the heart. Therefore, progression of both proliferation and differentiation is indispensable. It remains unknown whether proliferation and differentiation are related in these embryonic cardiomyocytes. We focused on abnormal phenotypes, such as hyperproliferation, inhibition of differentiation and enhanced expression of cyclin D1 in cardiomyocytes of mice with mutant jumonji (Jmj, Jarid2), which encodes the repressor of cyclin D1. Analysis of Jmj/cyclin D1 double mutant mice showed that Jmj was required for normal differentiation and normal expression of GATA4 protein through cyclin D1. Analysis of transgenic mice revealed that enhanced expression of cyclin D1 decreased GATA4 protein expression and inhibited the differentiation of cardiomyocytes in a CDK4/6-dependent manner, and that exogenous expression of GATA4 rescued the abnormal differentiation. Finally, CDK4 phosphorylated GATA4 directly, which promoted the degradation of GATA4 in cultured cells. These results suggest that CDK4 activated by cyclin D1 inhibits differentiation of cardiomyocytes by degradation of GATA4, and that initiation of Jmj expression unleashes the inhibition by repression of cyclin D1 expression and allows progression of differentiation, as well as repression of proliferation. Thus, a Jmj-cyclin D1 pathway coordinately regulates proliferation and differentiation of cardiomyocytes.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular , Ciclina D1/fisiología , Corazón/embriología , Miocitos Cardíacos/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Ciclina D1/genética , Embrión de Mamíferos , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HeLa , Corazón/fisiología , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , Complejo Represivo Polycomb 2 , Transducción de Señal , Factores de Tiempo
7.
J Biol Chem ; 284(2): 733-9, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19010785

RESUMEN

Covalent modifications of histone tails have critical roles in regulating gene expression. Previously, we identified the jumonji (jmj, Jarid2) gene, the jmjC domain, and a Jmj family. Recently, many Jmj family proteins have been shown to be histone demethylases, and jmjC is the catalytic domain. However, Jmj does not have histone demethylase activity because the jmjC domain lacks conserved residues for binding to cofactors. Independently of these studies, we previously showed that Jmj binds to the cyclin D1 promoter and represses the transcription of cyclin D1. Here, we show the mechanisms by which Jmj represses the transcription of cyclin D1. We found that a protein complex of Jmj had histone methyltransferase activity toward histone H3 lysine 9 (H3-K9). We also found that Jmj bound to the H3-K9 methyltransferases G9a and GLP. Expression of Jmj recruited G9a and GLP to the cyclin D1 promoter and increased H3-K9 methylation. Inactivation of both G9a and GLP, but not of only G9a, inhibited the methylation of H3-K9 in the cyclin D1 promoter and repression of cyclin D1 expression by Jmj. These results suggest that Jmj methylates H3-K9 and represses cyclin D1 expression through G9a and GLP, and that Jmj family proteins can regulate gene expression by not only histone demethylation but also other histone modification.


Asunto(s)
Ciclina D1/metabolismo , Histonas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Ciclina D1/genética , Regulación de la Expresión Génica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Histonas/química , Histonas/genética , Humanos , Metilación , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo
8.
Dev Biol ; 303(2): 549-60, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17189626

RESUMEN

During development of the mouse central nervous system (CNS), most neural progenitor cells proliferate in the ventricular zone (VZ). In many regions of the CNS, neural progenitor cells give rise to postmitotic neurons that initiate neuronal differentiation and migrate out of the VZ to the mantle zone (MZ). Thereafter, they remain in a quiescent state. Here, we found many ectopic mitotic cells and cell clusters expressing neural progenitor or proneural marker genes in the MZ of the hindbrain of jumonji (jmj) mutant embryos. When we examined the expression of cyclin D1, which is repressed by jmj in the repression of cardiac myocyte proliferation, we found many ectopic clusters expressing both cyclin D1 and Musashi 1 in the MZ of mutant embryos. jmj is mainly expressed in the cyclin D1 negative region in the hindbrain, and cyclin D1 expression in the VZ was upregulated in jmj mutant mice. In jmj and cyclin D1 double mutant mice, the ectopic mitosis and formation of the abnormal clusters in the MZ were rescued. These results suggest that a jmj-cyclin D1 pathway is required for the precise coordination of cell cycle exit and migration during neurogenesis in the mouse hindbrain.


Asunto(s)
Ciclinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Ciclina D , Ciclinas/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C3H , Ratones Mutantes , Mitosis/genética , Mitosis/fisiología , Proteínas del Tejido Nervioso/genética , Complejo Represivo Polycomb 2 , Embarazo , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Rombencéfalo/citología
9.
Biochem Biophys Res Commun ; 324(4): 1319-23, 2004 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-15504358

RESUMEN

jumonji (jmj) mutant mice, obtained by a gene trap strategy, showed several morphological abnormalities including neural tube and cardiac defects, and died in utero around embryonic day 11.5 (E11.5). It is unknown what causes the embryonic lethality. Here, we demonstrate that exogenous expression of jmj gene in the heart of jmj mutant mice rescued the morphological phenotypes in the heart, and these embryos survived until E13.5. These results suggest that there are at least two lethal periods in jmj mutant mice, and that cardiac abnormalities may cause the earlier lethality. In addition, the rescue of the cardiac abnormalities by the jmj transgene provided solid evidence that the cardiac abnormalities resulted from mutation of the jmj gene.


Asunto(s)
Cardiopatías Congénitas/etiología , Proteínas del Tejido Nervioso/genética , Animales , Embrión de Mamíferos/patología , Genes Letales , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Ratones , Ratones Mutantes , Ratones Transgénicos , Miocardio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Complejo Represivo Polycomb 2
10.
Biochem Biophys Res Commun ; 317(3): 925-9, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-15081428

RESUMEN

Cell proliferation is an important factor in various developmental processes in tissue morphogenesis, and is strictly regulated spatiotemporally. jumonji (jmj) deficient mice with a C3H/He background show hyperproliferation of cardiac myocytes and die probably of the phenotype around embryonic day 11.5. Analyses of the abnormalities revealed that repression of cyclin D1 expression by jmj is necessary for downregulation of cardiac myocyte proliferation. On the other hand, jmj mutant mice with a BALB/c background die around E14.5, suggesting that genetic background modifies hyperproliferation in the heart and timing of lethality. Here, we demonstrated that the hyperproliferation was not observed, and that cell proliferation and expression of cyclin D1 were downregulated properly in the cardiac ventricles of jmj mutant mice with a BALB/c background. These results suggest the modifier(s) of the jmj mutation can downregulate cardiac cell proliferation by repressing cyclin D1 expression in the same way as jmj.


Asunto(s)
División Celular/genética , Ciclina D1/genética , Regulación hacia Abajo/fisiología , Mutación , Miocardio/citología , Proteínas del Tejido Nervioso/fisiología , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Proteínas del Tejido Nervioso/genética , Complejo Represivo Polycomb 2
11.
Dev Cell ; 5(1): 85-97, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12852854

RESUMEN

Spatiotemporal regulation of cell proliferation is necessary for normal tissue development. The molecular mechanisms, especially the signaling pathways controlling the cell cycle machinery, remain largely unknown. Here, we demonstrate a negative relationship between the spatiotemporal patterns of jumonji (jmj) expression and cardiac myocyte proliferation. cyclin D1 expression and cell proliferation are enhanced in the cardiac myocytes of jmj-deficient mutant embryos. In contrast, jmj overexpression represses cyclin D1 expression in cardiac cells, and Jmj protein binds to cyclin D1 promoter in vivo and represses its transcriptional activity. cyclin D1 overexpression causes hyperproliferation in the cardiac myocytes, but the absence of cyclin D1 in jmj mutant embryos rescues the hyperproliferation. Therefore, Jmj might control cardiac myocyte proliferation and consequently cardiac morphogenesis by repressing cyclin D1 expression.


Asunto(s)
División Celular/genética , Ciclina D1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , División Celular/efectos de los fármacos , Cruzamientos Genéticos , Ciclina D1/genética , Regulación de la Expresión Génica , Corazón/embriología , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Modelos Biológicos , Mutación , Miocardio/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/farmacología , Complejo Represivo Polycomb 2 , Regiones Promotoras Genéticas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...