Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 25(10): 1453-1464, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37770566

RESUMEN

Integrin-mediated focal adhesions are the primary architectures that transmit forces between the extracellular matrix (ECM) and the actin cytoskeleton. Although focal adhesions are abundant on rigid and flat substrates that support high mechanical tensions, they are sparse in soft three-dimensional (3D) environments. Here we report curvature-dependent integrin-mediated adhesions called curved adhesions. Their formation is regulated by the membrane curvatures imposed by the topography of ECM protein fibres. Curved adhesions are mediated by integrin ɑvß5 and are molecularly distinct from focal adhesions and clathrin lattices. The molecular mechanism involves a previously unknown interaction between integrin ß5 and a curvature-sensing protein, FCHo2. We find that curved adhesions are prevalent in physiological conditions, and disruption of curved adhesions inhibits the migration of some cancer cell lines in 3D fibre matrices. These findings provide a mechanism for cell anchorage to natural protein fibres and suggest that curved adhesions may serve as a potential therapeutic target.


Asunto(s)
Uniones Célula-Matriz , Adhesiones Focales , Adhesión Celular/fisiología , Uniones Célula-Matriz/metabolismo , Adhesiones Focales/metabolismo , Integrinas/genética , Integrinas/metabolismo , Matriz Extracelular/metabolismo
2.
bioRxiv ; 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36993504

RESUMEN

Mammalian cells adhere to the extracellular matrix (ECM) and sense mechanical cues through integrin-mediated adhesions 1, 2 . Focal adhesions and related structures are the primary architectures that transmit forces between the ECM and the actin cytoskeleton. Although focal adhesions are abundant when cells are cultured on rigid substrates, they are sparse in soft environments that cannot support high mechanical tensions 3 . Here, we report a new class of integrin-mediated adhesions, curved adhesions, whose formation is regulated by membrane curvature instead of mechanical tension. In soft matrices made of protein fibres, curved adhesions are induced by membrane curvatures imposed by the fibre geometry. Curved adhesions are mediated by integrin ɑVß5 and are molecularly distinct from focal adhesions and clathrin lattices. The molecular mechanism involves a previously unknown interaction between integrin ß5 and a curvature-sensing protein FCHo2. We find that curved adhesions are prevalent in physiologically relevant environments. Disruption of curved adhesions by knocking down integrin ß5 or FCHo2 abolishes the migration of multiple cancer cell lines in 3D matrices. These findings provide a mechanism of cell anchorage to natural protein fibres that are too soft to support the formation of focal adhesions. Given their functional importance for 3D cell migration, curved adhesions may serve as a therapeutic target for future development.

3.
Nat Commun ; 13(1): 3093, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654773

RESUMEN

The glycocalyx is a shell of heavily glycosylated proteins and lipids distributed on the cell surface of nearly all cell types. Recently, it has been found that bulky transmembrane glycoproteins such as MUC1 can modulate membrane shape by inducing membrane protrusions. In this work, we examine the reciprocal relationship of how membrane shape affects MUC1's spatial distribution on the cell membrane and its biological significance. By employing nanopatterned surfaces and membrane-sculpting proteins to manipulate membrane curvature, we show that MUC1 avoids positively-curved membranes (membrane invaginations) and accumulates on negatively-curved membranes (membrane protrusions). MUC1's curvature sensitivity is dependent on the length and the extent of glycosylation of its ectodomain, with large and highly glycosylated forms preferentially staying out of positive curvature. Interestingly, MUC1's avoidance of positive membrane curvature enables it to escape from endocytosis and being removed from the cell membrane. These findings also suggest that the truncation of MUC1's ectodomain, often observed in breast and ovarian cancers, may enhance its endocytosis and potentiate its intracellular accumulation and signaling.


Asunto(s)
Endocitosis , Glicoproteínas , Membrana Celular , Fibras de la Dieta , Glicosilación , Proteínas de la Membrana
4.
ACS Nano ; 16(5): 7559-7571, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35533401

RESUMEN

Surface topography on the scale of tens of nanometers to several micrometers substantially affects cell adhesion, migration, and differentiation. Recent studies using electron microscopy and super-resolution microscopy provide insight into how cells interact with surface nanotopography; however, the complex sample preparation and expensive imaging equipment required for these methods makes them not easily accessible. Expansion microscopy (ExM) is an affordable approach to image beyond the diffraction limit, but ExM cannot be readily applied to image the cell-material interface as most materials do not expand. Here, we develop a protocol that allows the use of ExM to resolve the cell-material interface with high resolution. We apply the technique to image the interface between U2OS cells and nanostructured substrates as well as the interface between primary osteoblasts with titanium dental implants. The high spatial resolution enabled by ExM reveals that although AP2 and F-actin both accumulate at curved membranes induced by vertical nanostructures, they are spatially segregated. Using ExM, we also reliably image how osteoblasts interact with roughened titanium implant surfaces below the diffraction limit; this is of great interest to understand osseointegration of the implants but has up to now been a significant technical challenge due to the irregular shape, the large volume, and the opacity of the titanium implants that have rendered them incompatible with other super-resolution techniques. We believe that our protocol will enable the use of ExM as a powerful tool for cell-material interface studies.


Asunto(s)
Microscopía , Titanio , Titanio/química , Propiedades de Superficie , Oseointegración , Osteoblastos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...