Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D67-D71, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971299

RESUMEN

The Bioinformation and DNA Data Bank of Japan (DDBJ) Center (https://www.ddbj.nig.ac.jp) provides database archives that cover a wide range of fields in life sciences. As a founding member of the International Nucleotide Sequence Database Collaboration (INSDC), DDBJ accepts and distributes nucleotide sequence data as well as their study and sample information along with the National Center for Biotechnology Information in the United States and the European Bioinformatics Institute (EBI). Besides INSDC databases, the DDBJ Center provides databases for functional genomics (GEA: Genomic Expression Archive), metabolomics (MetaboBank) and human genetic and phenotypic data (JGA: Japanese Genotype-phenotype Archive). These database systems have been built on the National Institute of Genetics (NIG) supercomputer, which is also open for domestic life science researchers to analyze large-scale sequence data. This paper reports recent updates on the archival databases and the services of the DDBJ Center, highlighting the newly redesigned MetaboBank. MetaboBank uses BioProject and BioSample in its metadata description making it suitable for multi-omics large studies. Its collaboration with MetaboLights at EBI brings synergy in locating and reusing public data.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Metabolómica , Metadatos , Humanos , Biología Computacional , Genómica , Internet , Japón , Multiómica/métodos
2.
J Vet Med Sci ; 86(1): 18-27, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37952972

RESUMEN

Although chemotherapy using CHOP-based protocol induces remission in most cases of canine multicentric high-grade B-cell lymphoma (mhBCL), some cases develop early relapse during the first induction protocol. In this study, we examined the gene expression profiles of canine mhBCL before chemotherapy and investigated their associations with early relapse during the first whole CHOP-based protocol. Twenty-five cases of mhBCL treated with CHOP-based protocol as first induction chemotherapy were included in this study. Sixteen cases completed the first whole CHOP-based protocol without relapse (S-group), and nine developed relapse during the chemotherapy (R-group). RNA-seq was performed on samples from neoplastic lymph nodes. Differentially expressed genes (DEGs) were extracted by the comparison of gene expression profiles between S- and R-groups, and the differences in the expression levels of these genes were validated by RT-qPCR. Extracted 179 DEGs included the genes related to chemokine CC motif ligand, T-cell receptor signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway. We focused on chemokine CC motif ligand, and CCL4 was confirmed to be significantly downregulated in the R-group (P=0.039). We also focused on the genes related to T-cell signaling pathway, and CD3E (P=0.039), ITK (P=0.023), and LAT (P=0.023) genes were confirmed to be significantly upregulated in the R-group. The current results suggest that both changes in tumor cells and the interactions between tumor cells and immune cells are associated with the efficacy of the chemotherapy for first remission induction.


Asunto(s)
Enfermedades de los Perros , Linfoma de Células B , Animales , Perros , Transcriptoma , Ligandos , Recurrencia Local de Neoplasia/veterinaria , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Linfoma de Células B/veterinaria , Vincristina/uso terapéutico , Doxorrubicina/uso terapéutico , Inducción de Remisión , Enfermedad Crónica , Quimiocinas/uso terapéutico , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/genética
4.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37798248

RESUMEN

Although current long-read sequencing technologies have a long-read length that facilitates assembly for genome reconstruction, they have high sequence errors. While various assemblers with different perspectives have been developed, no systematic evaluation of assemblers with long reads for diploid genomes with varying heterozygosity has been performed. Here, we evaluated a series of processes, including the estimation of genome characteristics such as genome size and heterozygosity, de novo assembly, polishing, and removal of allelic contigs, using six genomes with various heterozygosity levels. We evaluated five long-read-only assemblers (Canu, Flye, miniasm, NextDenovo and Redbean) and five hybrid assemblers that combine short and long reads (HASLR, MaSuRCA, Platanus-allee, SPAdes and WENGAN) and proposed a concrete guideline for the construction of haplotype representation according to the degree of heterozygosity, followed by polishing and purging haplotigs, using stable and high-performance assemblers: Redbean, Flye and MaSuRCA.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Haplotipos , Heterocigoto , Alelos
5.
BMC Plant Biol ; 23(1): 391, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37568098

RESUMEN

BACKGROUND: Plant genome information is fundamental to plant research and development. Along with the increase in the number of published plant genomes, there is a need for an efficient system to retrieve various kinds of genome-related information from many plant species across plant kingdoms. Various plant databases have been developed, but no public database covers both genomic and genetic resources over a wide range of plant species. MAIN BODY: We have developed a plant genome portal site, Plant GARDEN (Genome And Resource Database Entry: https://plantgarden.jp/en/index ), to provide diverse information related to plant genomics and genetics in divergent plant species. Elasticsearch is used as a search engine, and cross-keyword search across species is available. Web-based user interfaces (WUI) for PCs and tablet computers were independently developed to make data searches more convenient. Several types of data are stored in Plant GARDEN: reference genomes, gene sequences, PCR-based DNA markers, trait-linked DNA markers identified in genetic studies, SNPs, and in/dels on publicly available sequence read archives (SRAs). The data registered in Plant GARDEN as of March 2023 included 304 assembled genome sequences, 11,331,614 gene sequences, 419,132 DNA markers, 8,225 QTLs, and 5,934 SNP lists (gvcf files). In addition, we have re-annotated all the genes registered in Plant GARDEN by using a functional annotation tool, Hayai-Annotation, to compare the orthologous relationships among genes. CONCLUSION: The aim of Plant GARDEN is to provide plant genome information for use in the fields of plant science as well as for plant-based industries, education, and other relevant areas. Therefore, we have designed a WUI that allows a diverse range of users to access such information in an easy-to-understand manner. Plant GARDEN will eventually include a wide range of plant species for which genome sequences are assembled, and thus the number of plant species in the database will continue to expand. We anticipate that Plant GARDEN will promote the understanding of genomes and gene diversity by facilitating comparisons of the registered sequences.


Asunto(s)
Bases de Datos Genéticas , Genómica , Marcadores Genéticos , Genoma de Planta/genética , Sitios de Carácter Cuantitativo
6.
J Feline Med Surg ; 25(7): 1098612X231185393, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37489504

RESUMEN

OBJECTIVES: Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disease in cats. In most cases, the responsible abnormality is a nonsense single nucleotide polymorphism in exon 29 of the PKD1 gene (chrE3:g.42858112C>A, the conventional PKD1 variant). The aim of this study was to conduct a large-scale epidemiological study of ADPKD caused by the conventional PKD1 variant in Japan and to search for novel polymorphisms by targeted resequencing of the PKD1 using a next-generation sequencer. METHODS: A total of 1281 cats visiting the Veterinary Medical Center of the University of Tokyo were included in this study. DNA was extracted from the blood of each cat. We established a novel TaqMan real-time PCR genotyping assay for the conventional PKD1 variant, and all cases were examined for the presence of this variant. Targeted resequencing of all exons of the PKD1 was performed on the DNA of 23 cats with the conventional PKD1 variant, six cats diagnosed with cystic kidneys but without this variant, and 61 wild-type normal cats. RESULTS: Among the 1281 cats examined in this study, 23 (1.8%) harboured the conventional PKD1 variant. The odds of having the conventional PKD1 variant were significantly higher in Persian cats, Scottish Folds and Exotic Shorthairs than in the other breeds, although the number of cases in each breed was small. Furthermore, we identified four variants unique to cats with cystic kidneys that were not found in wild-type normal cats, all of which were in exon 15. In particular, two (chrE:g.42848725delC, pGly1641fs and chrE:g.42850283C>T, pArg2162Trp) were candidate variants. CONCLUSIONS AND RELEVANCE: This study revealed that the conventional PKD1 variant was prevalent in Scottish Fold, Persian and Exotic Shorthair breeds in Japan, and variants in exon 15 of PKD1, in addition to the conventional variant in exon 29, would be key factors in the pathogenesis of ADPKD in cats.


Asunto(s)
Enfermedades de los Gatos , Riñón Poliquístico Autosómico Dominante , Gatos , Animales , Riñón Poliquístico Autosómico Dominante/epidemiología , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/veterinaria , Canales Catiónicos TRPP/genética , Exones/genética , Estudios Epidemiológicos , ADN , Mutación , Enfermedades de los Gatos/epidemiología , Enfermedades de los Gatos/genética
7.
Plant J ; 115(1): 175-189, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36994645

RESUMEN

In plants, variations in seed size and number are outcomes of different reproductive strategies. Both traits are often environmentally influenced, suggesting that a mechanism exists to coordinate these phenotypes in response to available maternal resources. Yet, how maternal resources are sensed and influence seed size and number is largely unknown. Here, we report a mechanism that senses maternal resources and coordinates grain size and number in the wild rice Oryza rufipogon, a wild progenitor of Asian cultivated rice. We showed that FT-like 9 (FTL9) regulates both grain size and number and that maternal photosynthetic assimilates induce FTL9 expression in leaves to act as a long-range signal that increases grain number and reduces size. Our findings highlight a strategy that benefits wild plants to survive in a fluctuating environment. In this strategy, when maternal resources are sufficient, wild plants increase their offspring number while preventing an increase in offspring size by the action of FTL9, which helps expand their habitats. In addition, we found that a loss-of-function allele (ftl9) is prevalent among wild and cultivated populations, offering a new scenario in the history of rice domestication.


Asunto(s)
Grano Comestible , Oryza , Grano Comestible/genética , Grano Comestible/metabolismo , Semillas/genética , Fenotipo , Hojas de la Planta/genética , Domesticación , Oryza/genética , Oryza/metabolismo
8.
Plant Cell Physiol ; 64(2): 248-257, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36755428

RESUMEN

Nicotiana benthamiana is widely used as a model plant for dicotyledonous angiosperms. In fact, the strains used in research are highly susceptible to a wide range of viruses. Accordingly, these strains are subject to plant pathology and plant-microbe interactions. In terms of plant-plant interactions, N. benthamiana is one of the plants that exhibit grafting affinity with plants from different families. Thus, N. benthamiana is a good model for plant biology and has been the subject of genome sequencing analyses for many years. However, N. benthamiana has a complex allopolyploid genome, and its previous reference genome is fragmented into 141,000 scaffolds. As a result, molecular genetic analysis is difficult to perform. To improve this effort, de novo whole-genome assembly was performed in N. benthamiana with Hifi reads, and 1,668 contigs were generated with a total length of 3.1 Gb. The 21 longest scaffolds, regarded as pseudomolecules, contained a 2.8-Gb sequence, occupying 95.6% of the assembled genome. A total of 57,583 high-confidence gene sequences were predicted. Based on a comparison of the genome structures between N. benthamiana and N. tabacum, N. benthamiana was found to have more complex chromosomal rearrangements, reflecting the age of interspecific hybridization. To verify the accuracy of the annotations, the cell wall modification genes involved in grafting were analyzed, which revealed not only the previously indeterminate untranslated region, intron and open reading frame sequences but also the genomic locations of their family genes. Owing to improved genome assembly and annotation, N. benthamiana would increasingly be more widely accessible.


Asunto(s)
Genes de Plantas , Nicotiana , Nicotiana/genética , Genómica , Genoma de Planta
9.
Plants (Basel) ; 12(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36840278

RESUMEN

The two varieties of mangosteen (Garcinia mangostana L.) cultivated in Malaysia are known as Manggis and Mesta. The latter is preferred for its flavor, texture, and seedlessness. Here, we report a complete plastome (156,580 bp) of the Mesta variety that was obtained through a hybrid assembly approach using PacBio and Illumina sequencing reads. It encompasses a large single-copy (LSC) region (85,383 bp) and a small single-copy (SSC) region (17,137 bp) that are separated by 27,230 bp of inverted repeat (IR) regions at both ends. The plastome comprises 128 genes, namely, 83 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The plastome of the Manggis variety (156,582 bp) obtained from reference-guided assembly of Illumina reads was found to be nearly identical to Mesta except for two indels and the presence of a single-nucleotide polymorphism (SNP). Comparative analyses with other publicly available Garcinia plastomes, including G. anomala, G. gummi-gutta, G. mangostana var. Thailand, G. oblongifolia, G. paucinervis, and G. pedunculata, found that the gene content, gene order, and gene orientation were highly conserved among the Garcinia species. Phylogenomic analysis divided the six Garcinia plastomes into three groups, with the Mesta and Manggis varieties clustered closer to G. anomala, G. gummi-gutta, and G. oblongifolia, while the Thailand variety clustered with G. pedunculata in another group. These findings serve as future references for the identification of species or varieties and facilitate phylogenomic analysis of lineages from the Garcinia genus to better understand their evolutionary history.

10.
Insects ; 14(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36835690

RESUMEN

Genome annotation is critically important data that can support research. Draft genome annotations cover representative genes; however, they often do not include genes that are expressed only in limited tissues and stages, or genes with low expression levels. Neuropeptides are responsible for regulation of various physiological and biological processes. A recent study disclosed the genome draft of the two-spotted cricket Gryllus bimaculatus, which was utilized to understand the intriguing physiology and biology of crickets. Thus far, only two of the nine reported neuropeptides in G. bimaculatus were annotated in the draft genome. Even though de novo assembly using transcriptomic analyses can comprehensively identify neuropeptides, this method does not follow those annotations on the genome locus. In this study, we performed the annotations based on the reference mapping, de novo transcriptome assembly, and manual curation. Consequently, we identified 41 neuropeptides out of 43 neuropeptides, which were reported in the insects. Further, 32 of the identified neuropeptides on the genomic loci in G. bimaculatus were annotated. The present annotation methods can be applicable for the neuropeptide annotation of other insects. Furthermore, the methods will help to generate useful infrastructures for studies relevant to neuropeptides.

11.
DNA Res ; 30(1)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36383440

RESUMEN

Perilla frutescens (Lamiaceae) is an important herbal plant with hundreds of bioactive chemicals, among which perillaldehyde and rosmarinic acid are the two major bioactive compounds in the plant. The leaves of red perilla are used as traditional Kampo medicine or food ingredients. However, the medicinal and nutritional uses of this plant could be improved by enhancing the production of valuable metabolites through the manipulation of key enzymes or regulatory genes using genome editing technology. Here, we generated a high-quality genome assembly of red perilla domesticated in Japan. A near-complete chromosome-level assembly of P. frutescens was generated contigs with N50 of 41.5 Mb from PacBio HiFi reads. 99.2% of the assembly was anchored into 20 pseudochromosomes, among which seven pseudochromosomes consisted of one contig, while the rest consisted of less than six contigs. Gene annotation and prediction of the sequences successfully predicted 86,258 gene models, including 76,825 protein-coding genes. Further analysis showed that potential targets of genome editing for the engineering of anthocyanin pathways in P. frutescens are located on the late-stage pathways. Overall, our genome assembly could serve as a valuable reference for selecting target genes for genome editing of P. frutescens.


Asunto(s)
Lamiaceae , Perilla frutescens , Perilla , Perilla frutescens/genética , Perilla frutescens/química , Perilla frutescens/metabolismo , Perilla/genética , Perilla/química , Japón , Lamiaceae/genética , Anotación de Secuencia Molecular
12.
Nucleic Acids Res ; 51(D1): D101-D105, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36420889

RESUMEN

The Bioinformation and DNA Data Bank of Japan (DDBJ) Center (https://www.ddbj.nig.ac.jp) maintains database archives that cover a wide range of fields in life sciences. As a founding member of the International Nucleotide Sequence Database Collaboration (INSDC), our primary mission is to collect and distribute nucleotide sequence data, as well as their study and sample information, in collaboration with the National Center for Biotechnology Information in the United States and the European Bioinformatics Institute. In addition to INSDC resources, the Center operates databases for functional genomics (GEA: Genomic Expression Archive), metabolomics (MetaboBank), and human genetic and phenotypic data (JGA: Japanese Genotype-Phenotype Archive). These databases are built on the supercomputer of the National Institute of Genetics, whose remaining computational capacity is actively utilized by domestic researchers for large-scale biological data analyses. Here, we report our recent updates and the activities of our services.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genómica , Humanos , Estados Unidos , Biología Computacional , Computadores , Secuencia de Bases , Japón , Internet
13.
Plant Cell Physiol ; 63(11): 1745-1755, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36083565

RESUMEN

The liverwort Marchantia polymorpha is equipped with a wide range of molecular and genetic tools and resources that have led to its wide use to explore the evo-devo aspects of land plants. Although its diverse transcriptome data are rapidly accumulating, there is no extensive yet user-friendly tool to exploit such a compilation of data and to summarize results with the latest annotations. Here, we have developed a web-based suite of tools, MarpolBase Expression (MBEX, https://marchantia.info/mbex/), where users can visualize gene expression profiles, identify differentially expressed genes, perform co-expression and functional enrichment analyses and summarize their comprehensive output in various portable formats. Using oil body biogenesis as an example, we demonstrated that the results generated by MBEX were consistent with the published experimental evidence and also revealed a novel transcriptional network in this process. MBEX should facilitate the exploration and discovery of the genetic and functional networks behind various biological processes in M. polymorpha and promote our understanding of the evolution of land plants.


Asunto(s)
Marchantia , Marchantia/genética , Marchantia/metabolismo , Transcriptoma/genética , Redes Reguladoras de Genes , Internet
14.
Sci Rep ; 12(1): 9480, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676406

RESUMEN

Fruits of Garcinia mangostana L. (mangosteen) are rich in nutrients with xanthones found in the pericarp having great pharmaceutical potential. Mangosteen variety Mesta is only found in Malaysia, which tastes sweeter than the common Manggis variety in Southeast Asia. In this study, we report the complete mitogenome of G. mangostana L. variety Mesta with a total sequence length of 371,235 bp of which 1.7% could be of plastid origin. The overall GC content of the mitogenome is 43.8%, comprising 29 protein-coding genes, 3 rRNA genes, and 21 tRNA genes. Repeat and tandem repeat sequences accounted for 5.8% and 0.15% of the Mesta mitogenome, respectively. There are 333 predicted RNA-editing sites in Mesta mitogenome. These include the RNA-editing events that generated the start codon of nad1 gene and the stop codon of ccmFC gene. Phylogenomic analysis using both maximum likelihood and Bayesian analysis methods showed that the mitogenome of mangosteen variety Mesta was grouped under Malpighiales order. This is the first complete mitogenome from the Garcinia genus for future evolutionary studies.


Asunto(s)
Garcinia mangostana , Genoma Mitocondrial , Xantonas , Teorema de Bayes , Garcinia mangostana/genética , ARN
15.
Proc Natl Acad Sci U S A ; 119(23): e2121469119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35658077

RESUMEN

Recent studies have revealed a surprising diversity of sex chromosomes in vertebrates. However, the detailed mechanism of their turnover is still elusive. To understand this process, it is necessary to compare closely related species in terms of sex-determining genes and the chromosomes harboring them. Here, we explored the genus Takifugu, in which one strong candidate sex-determining gene, Amhr2, has been identified. To trace the processes involved in transitions in the sex-determination system in this genus, we studied 12 species and found that while the Amhr2 locus likely determines sex in the majority of Takifugu species, three species have acquired sex-determining loci at different chromosomal locations. Nevertheless, the generation of genome assemblies for the three species revealed that they share a portion of the male-specific supergene that contains a candidate sex-determining gene, GsdfY, along with genes that potentially play a role in male fitness. The shared supergene spans ∼100 kb and is flanked by two duplicated regions characterized by CACTA transposable elements. These results suggest that the shared supergene has taken over the role of sex-determining locus from Amhr2 in lineages leading to the three species, and repeated translocations of the supergene underlie the turnover of sex chromosomes in these lineages. These findings highlight the underestimated role of a mobile supergene in the turnover of sex chromosomes in vertebrates.


Asunto(s)
Procesos de Determinación del Sexo , Takifugu , Animales , Elementos Transponibles de ADN/genética , Evolución Molecular , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Takifugu/genética , Translocación Genética
16.
Sci Adv ; 8(17): eabi5075, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486731

RESUMEN

Secondary loss of photosynthesis is observed across almost all plastid-bearing branches of the eukaryotic tree of life. However, genome-based insights into the transition from a phototroph into a secondary heterotroph have so far only been revealed for parasitic species. Free-living organisms can yield unique insights into the evolutionary consequence of the loss of photosynthesis, as the parasitic lifestyle requires specific adaptations to host environments. Here, we report on the diploid genome of the free-living diatom Nitzschia putrida (35 Mbp), a nonphotosynthetic osmotroph whose photosynthetic relatives contribute ca. 40% of net oceanic primary production. Comparative analyses with photosynthetic diatoms and heterotrophic algae with parasitic lifestyle revealed that a combination of gene loss, the accumulation of genes involved in organic carbon degradation, a unique secretome, and the rapid divergence of conserved gene families involved in cell wall and extracellular metabolism appear to have facilitated the lifestyle of a free-living secondary heterotroph.

17.
Curr Biol ; 31(24): 5522-5532.e7, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34735792

RESUMEN

Sex determination is a central process for sexual reproduction and is often regulated by a sex determinant encoded on a sex chromosome. Rules that govern the evolution of sex chromosomes via specialization and degeneration following the evolution of a sex determinant have been well studied in diploid organisms. However, distinct predictions apply to sex chromosomes in organisms where sex is determined in the haploid phase of the life cycle: both sex chromosomes, female U and male V, are expected to maintain their gene functions, even though both are non-recombining. This is in contrast to the X-Y (or Z-W) asymmetry and Y (W) chromosome degeneration in XY (ZW) systems of diploids. Here, we provide evidence that sex chromosomes diverged early during the evolution of haploid liverworts and identify the sex determinant on the Marchantia polymorpha U chromosome. This gene, Feminizer, encodes a member of the plant-specific BASIC PENTACYSTEINE transcription factor family. It triggers female differentiation via regulation of the autosomal sex-determining locus of FEMALE GAMETOPHYTE MYB and SUPPRESSOR OF FEMINIZATION. Phylogenetic analyses of Feminizer and other sex chromosome genes indicate dimorphic sex chromosomes had already been established 430 mya in the ancestral liverwort. Feminizer also plays a role in reproductive induction that is shared with its gametolog on the V chromosome, suggesting an ancestral function, distinct from sex determination, was retained by the gametologs. This implies ancestral functions can be preserved after the acquisition of a sex determination mechanism during the evolution of a dominant haploid sex chromosome system.


Asunto(s)
Marchantia , Evolución Molecular , Haploidia , Marchantia/genética , Filogenia , Cromosomas Sexuales/genética
18.
DNA Res ; 28(6)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34677568

RESUMEN

Cyanobacteria are a diverse group of Gram-negative prokaryotes that perform oxygenic photosynthesis. Cyanobacteria have been used for research on photosynthesis and have attracted attention as a platform for biomaterial/biofuel production. Cyanobacteria are also present in almost all habitats on Earth and have extensive impacts on global ecosystems. Given their biological, economical, and ecological importance, the number of high-quality genome sequences for Cyanobacteria strains is limited. Here, we performed genome sequencing of Cyanobacteria strains in the National Institute for Environmental Studies microbial culture collection in Japan. We sequenced 28 strains that can form a heterocyst, a morphologically distinct cell that is specialized for fixing nitrogen, and 3 non-heterocystous strains. Using Illumina sequencing of paired-end and mate-pair libraries with in silico finishing, we constructed highly contiguous assemblies. We determined the phylogenetic relationship of the sequenced genome assemblies and found potential difficulties in the classification of certain heterocystous clades based on morphological observation. We also revealed a bias on the sequenced strains by the phylogenetic analysis of the 16S rRNA gene including unsequenced strains. Genome sequencing of Cyanobacteria strains deposited in worldwide culture collections will contribute to understanding the enormous genetic and phenotypic diversity within the phylum Cyanobacteria.


Asunto(s)
Cianobacterias , Ecosistema , Secuencia de Bases , Cianobacterias/genética , Filogenia , ARN Ribosómico 16S/genética
19.
Rice (N Y) ; 14(1): 24, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661371

RESUMEN

BACKGROUND: OryzaGenome ( http://viewer.shigen.info/oryzagenome21detail/index.xhtml ), a feature within Oryzabase ( https://shigen.nig.ac.jp/rice/oryzabase/ ), is a genomic database for wild Oryza species that provides comparative and evolutionary genomics approaches for the rice research community. RESULTS: Here we release OryzaGenome2.1, the first major update of OryzaGenome. The main feature in this version is the inclusion of newly sequenced genotypes and their meta-information, giving a total of 217 accessions of 19 wild Oryza species (O. rufipogon, O. barthii, O. longistaminata, O. meridionalis, O. glumaepatula, O. punctata, O. minuta, O. officinalis, O. rhizomatis, O. eichingeri, O. latifolia, O. alta, O. grandiglumis, O. australiensis, O. brachyantha, O. granulata, O. meyeriana, O. ridleyi, and O. longiglumis). These 19 wild species belong to 9 genome types (AA, BB, CC, BBCC, CCDD, EE, FF, GG, and HHJJ), representing wide genomic diversity in the genus. Using the genotype information, we analyzed the genome diversity of Oryza species. Other features of OryzaGenome facilitate the use of information on single nucleotide polymorphisms (SNPs) between O. sativa and its wild progenitor O. rufipogon in rice research, including breeding as well as basic science. For example, we provide Variant Call Format (VCF) files for genome-wide SNPs of 33 O. rufipogon accessions against the O. sativa reference genome, IRGSP1.0. In addition, we provide a new SNP Effect Table function, allowing users to identify SNPs or small insertion/deletion polymorphisms in the 33 O. rufipogon accessions and to search for the effect of these polymorphisms on protein function if they reside in the coding region (e.g., are missense or nonsense mutations). Furthermore, the SNP Viewer for 446 O. rufipogon accessions was updated by implementing new tracks for possible selective sweep regions and highly mutated regions that were potentially exposed to selective pressures during the process of domestication. CONCLUSION: OryzaGenome2.1 focuses on comparative genomic analysis of diverse wild Oryza accessions collected around the world and on the development of resources to speed up the identification of critical trait-related genes, especially from O. rufipogon. It aims to promote the use of genotype information from wild accessions in rice breeding and potential future crop improvements. Diverse genotypes will be a key resource for evolutionary studies in Oryza, including polyploid biology.

20.
Harmful Algae ; 101: 101942, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526179

RESUMEN

Planktothrix species are distributed worldwide, and these prevalent cyanobacteria occasionally form potentially devastating toxic blooms. Given the ecological and taxonomic importance of Planktothrix agardhii as a bloom species, we set out to determine the complete genome sequence of the type strain Planktothrix agardhii NIES-204. Remarkably, we found that the 5S ribosomal RNA genes are not adjacent to the 16S and 23S ribosomal RNA genes. The genomic structure of P. agardhii NIES-204 is highly similar to that of another P. agardhii strain isolated from a geographically distant site, although they differ distinctly by a large inversion. We identified numerous gene clusters that encode the components of the metabolic pathways that generate secondary metabolites. We found that the aeruginosin biosynthetic gene cluster was more similar to that of another toxic bloom-forming cyanobacterium Microcystis aeruginosa than to that of other strains of Planktothrix, suggesting horizontal gene transfer. Prenyltransferases encoded in the prenylagaramide gene cluster of Planktothrix strains were classified into two phylogenetically distinct types, suggesting a functional difference. In addition to the secondary metabolite gene clusters, we identified genes for inorganic nitrogen and phosphate uptake components and gas vesicles. Our findings contribute to further understanding of the ecologically important genus Planktothrix.


Asunto(s)
Cianobacterias , Microcystis , Cianobacterias/genética , Floraciones de Algas Nocivas , Microcystis/genética , Familia de Multigenes , Planktothrix
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA