Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 204(3): e0057821, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007154

RESUMEN

The agent largely responsible for initiating dental caries, Streptococcus mutans, produces acetoin dehydrogenase that is encoded by the adh operon. The operon consists of the adhA and B genes (E1 dehydrogenase), adhC (E2 lipoylated transacetylase), adhD (E3 dihydrolipoamide dehydrogenase), and lplA (lipoyl ligase). Evidence is presented that AdhC interacts with SpxA2, a redox-sensitive transcription factor functioning in cell wall and oxidative stress responses. In-frame deletion mutations of adh genes conferred oxygen-dependent sensitivity to slightly alkaline pH (pH 7.2-7.6), within the range of values observed in human saliva. Growth defects were also observed when glucose or sucrose served as major carbon sources. A deletion of the adhC orthologous gene, acoC gene of Streptococcus gordonii, did not result in pH sensitivity or defective growth in glucose and sucrose. The defects observed in adh mutants were partially reversed by addition of pyruvate. Unlike most 2-oxoacid dehydrogenases, the E3 AdhD subunit bears an N-terminal lipoylation domain nearly identical to that of E2 AdhC. Changing the lipoyl domains of AdhC and AdhD by replacing the lipoate attachment residue, lysine to arginine, caused no significant reduction in pH sensitivity but the adhDK43R mutation eliminating the lipoylation site resulted in an observable growth defect in glucose medium. The adh mutations were partially suppressed by a deletion of rex, encoding an NAD+/NADH-sensing transcription factor that represses genes functioning in fermentation. spxA2 adh double mutants show synthetic growth restriction at elevated pH and upon ampicillin treatment. These results suggest a role for Adh in stress management in S. mutans. IMPORTANCE Dental caries is often initiated by Streptococcus mutans, which establishes a biofilm and a low pH environment on tooth enamel surfaces. The current study has uncovered vulnerabilities of S. mutans mutant strains that are unable to produce the enzyme complex, acetoin dehydrogenase (Adh). Such mutants are sensitive to modest increases in pH to 7.2-7.6, within the range of human saliva, while a mutant of a commensal Streptococcal species is resistant. The S. mutans adh strains are also defective in carbohydrate utilization and are hypersensitive to a cell wall-acting antibiotic. The studies suggest that Adh could be a potential target for interfering with S. mutans colonization of the oral environment.


Asunto(s)
Caries Dental , Streptococcus mutans , Acetoina Deshidrogenasa/genética , Acetoina Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Humanos , Operón , Streptococcus mutans/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/metabolismo
2.
J Bacteriol ; 204(2): e0043221, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34898263

RESUMEN

The ResD-ResE signal transduction system plays a pivotal role in anaerobic nitrate respiration in Bacillus subtilis. The nasD operon encoding nitrite reductase is essential for nitrate respiration and is tightly controlled by the ResD response regulator. To understand the mechanism of ResD-dependent transcription activation of the nasD operon, we explored ResD-RNA polymerase (RNAP), ResD-DNA, and RNAP-DNA interactions required for nasD transcription. Full transcriptional activation requires the upstream promoter region where five molecules of ResD bind. The distal ResD-binding subsite at -87 to -84 partially overlaps a sequence similar to the consensus distal subsite of the upstream (UP) element with which the Escherichia coli C-terminal domain of the α subunit (αCTD) of RNAP interacts to stimulate transcription. We propose that interaction between αCTD and ResD at the promoter-distal site is essential for stimulating nasD transcription. Although nasD has an extended -10 promoter, it lacks a reasonable -35 element. Genetic analysis and structural simulations predicted that the absence of the -35 element might be compensated by interactions between σA and αCTD and between αCTD and ResD at the promoter-proximal ResD-binding subsite. Thus, our work suggested that ResD participates in nasD transcription activation by binding to two αCTD subunits at the proximal and distal promoter sites, representing a unique configuration for transcription activation. IMPORTANCE A significant number of ResD-controlled genes have been identified, and transcription regulatory pathways in which ResD participates have emerged. Nevertheless, the mechanism of how ResD activates transcription of different genes in a nucleotide sequence-specific manner has been less explored. This study suggested that among the five ResD-binding subsites in the promoter of the nasD operon, the promoter-proximal and -distal ResD-binding subsites play important roles in nasD activation by adapting different modes of protein-protein and protein-DNA interactions. The finding of a new type of protein-promoter architecture provides insight into the understanding of transcription activation mechanisms controlled by transcription factors, including the ubiquitous response regulators of two-component regulatory systems, particularly in Gram-positive bacteria.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Nitrito Reductasas/genética , Factores de Transcripción/genética , Activación Transcripcional , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitrito Reductasas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
3.
J Bacteriol ; 199(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28439033

RESUMEN

Upon oxygen limitation, the Bacillus subtilis ResE sensor kinase and its cognate ResD response regulator play primary roles in the transcriptional activation of genes functioning in anaerobic respiration. The nitric oxide (NO)-sensitive NsrR repressor controls transcription to support nitrate respiration. In addition, the ferric uptake repressor (Fur) can modulate transcription under anaerobic conditions. However, whether these controls are direct or indirect has been investigated only in a gene-specific manner. To gain a genomic view of anaerobic gene regulation, we determined the genome-wide in vivo DNA binding of ResD, NsrR, and Fur transcription factors (TFs) using in situ DNase I footprinting combined with chromatin affinity precipitation sequencing (ChAP-seq; genome footprinting by high-throughput sequencing [GeF-seq]). A significant number of sites were targets of ResD and NsrR, and a majority of them were also bound by Fur. The binding of multiple TFs to overlapping targets affected each individual TF's binding, which led to combinatorial transcriptional control. ResD bound to both the promoters and the coding regions of genes under its positive control. Other genes showing enrichment of ResD at only the promoter regions are targets of direct ResD-dependent repression or antirepression. The results support previous findings of ResD as an RNA polymerase (RNAP)-binding protein and indicated that ResD can associate with the transcription elongation complex. The data set allowed us to reexamine consensus sequence motifs of Fur, ResD, and NsrR and uncovered evidence that multiple TGW (where W is A or T) sequences surrounded by an A- and T-rich sequence are often found at sites where all three TFs competitively bind.IMPORTANCE Bacteria encounter oxygen fluctuation in their natural environment as well as in host organisms. Hence, understanding how bacteria respond to oxygen limitation will impact environmental and human health. ResD, NsrR, and Fur control transcription under anaerobic conditions. This work using in situ DNase I footprinting uncovered the genome-wide binding profile of the three transcription factors (TFs). Binding of the TFs is often competitive or cooperative depending on the promoters and the presence of other TFs, indicating that transcriptional regulation by multiple TFs is much more complex than we originally thought. The results from this study provide a more complete picture of anaerobic gene regulation governed by ResD, NsrR, and Fur and contribute to our further understanding of anaerobic physiology.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Huella de ADN/métodos , Proteínas de Unión al ADN/metabolismo , Genoma Bacteriano , Factores de Transcripción/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , ADN Bacteriano , Proteínas de Unión al ADN/genética , Fermentación , Regulación Bacteriana de la Expresión Génica/fisiología , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/genética
4.
Mol Microbiol ; 94(4): 815-27, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25231235

RESUMEN

Spx, a member of the ArsC (arsenate reductase) protein family, is conserved in Gram-positive bacteria, and interacts with RNA polymerase to activate transcription in response to toxic oxidants. In Bacillus anthracis str. Sterne, resistance to oxidative stress requires the activity of two paralogues, SpxA1 and SpxA2. Suppressor mutations were identified in spxA1 mutant cells that conferred resistance to hydrogen peroxide. The mutations generated null alleles of the saiR gene and resulted in elevated spxA2 transcription. The saiR gene resides in the spxA2 operon and encodes a member of the Rrf2 family of transcriptional repressors. Derepression of spxA2 in a saiR mutant required SpxA2, indicating an autoregulatory mechanism of spxA2 control. Reconstruction of SaiR-dependent control of spxA2 was accomplished in Bacillus subtilis, where deletion analysis uncovered two cis-elements within the spxA2 regulatory region that are required for repression. Mutations to one of the sequences of dyad symmetry substantially reduced SaiR binding and SaiR-dependent repression of transcription from the spxA2 promoter in vitro. Previous studies have shown that spxA2 is one of the most highly induced genes in a macrophage infected with B. anthracis. The work reported herein uncovered a key regulator, SaiR, of the Spx system of stress response control.


Asunto(s)
Bacillus anthracis/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Análisis Mutacional de ADN , Eliminación de Gen , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Estrés Fisiológico
5.
J Bacteriol ; 196(2): 493-503, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214949

RESUMEN

The ResD response regulator activates transcription of diverse genes in Bacillus subtilis in response to oxygen limitation. ResD regulon genes that are the most highly induced during nitrate respiration include the nitrite reductase operon (nasDEF) and the flavohemoglobin gene (hmp), whose products function in nitric oxide (NO) metabolism. Transcription of these genes is also under the negative control of the NO-sensitive NsrR repressor. Recent studies showed that the NsrR regulon contains genes with no apparent relevance to NO metabolism and that the ResD response regulator and NsrR coordinately regulate transcription. To determine whether these genes are direct targets of NsrR and ResD, we used chromatin affinity precipitation coupled with tiling chip (ChAP-chip) and ChAP followed by quantitative PCR (ChAP-qPCR) analyses. The study showed that ResD and NsrR directly control transcription of the ykuNOP operon in the Fur regulon. ResD functions as an activator at the nasD and hmp promoters, whereas it functions at the ykuN promoter as an antirepressor of Fur and a corepressor for NsrR. This mechanism likely participates in fine-tuning of transcript levels in response to different sources of stress, such as oxygen limitation, iron limitation, and exposure to NO.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Inmunoprecipitación de Cromatina , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Microbiologyopen ; 2(4): 695-714, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23873705

RESUMEN

Spx of Bacillus subtilis is a redox-sensitive protein, which, under disulfide stress, interacts with RNA polymerase to activate genes required for maintaining thiol homeostasis. Spx orthologs are highly conserved among low %GC Gram-positive bacteria, and often exist in multiple paralogous forms. In this study, we used B. anthracis Sterne, which harbors two paralogous spx genes, spxA1 and spxA2, to examine the phenotypes of spx null mutations and to identify the genes regulated by each Spx paralog. Cells devoid of spxA1 were sensitive to diamide and hydrogen peroxide, while the spxA1 spoxA2 double mutant was hypersensitive to the thiol-specific oxidant, diamide. Bacillus anthracis Sterne strains expressing spxA1DD or spxA2DD alleles encoding protease-resistant products were used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses in order to uncover genes under SpxA1, SpxA2, or SpxA1/SpxA2 control. Comparison of transcriptomes identified many genes that were upregulated when either SpxA1DD or SpxA2DD was produced, but several genes were uncovered whose transcript levels increased in only one of the two SpxADD-expression strains, suggesting that each Spx paralog governs a unique regulon. Among genes that were upregulated were those encoding orthologs of proteins that are specifically involved in maintaining intracellular thiol homeostasis or alleviating oxidative stress. Some of these genes have important roles in B. anthracis pathogenesis, and a large number of upregulated hypothetical genes have no homology outside of the B. cereus/thuringiensis group. Microarray and RT-qPCR analyses also unveiled a regulatory link that exists between the two spx paralogous genes. The data indicate that spxA1 and spxA2 are transcriptional regulators involved in relieving disulfide stress but also control a set of genes whose products function in other cellular processes.


Asunto(s)
Bacillus anthracis/genética , Bacillus anthracis/fisiología , Proteínas Bacterianas/biosíntesis , Perfilación de la Expresión Génica , Estrés Oxidativo , Factores de Transcripción/biosíntesis , Secuencia de Aminoácidos , Bacillus anthracis/efectos de los fármacos , Proteínas Bacterianas/genética , Diamida/toxicidad , Eliminación de Gen , Orden Génico , Peróxido de Hidrógeno/toxicidad , Análisis por Micromatrices , Datos de Secuencia Molecular , Oxidantes/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética
7.
PLoS One ; 7(3): e34037, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479511

RESUMEN

Amicoumacin A exhibits strong antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), hence we sought to uncover its mechanism of action. Genome-wide transcriptome analysis of S. aureus COL in response to amicoumacin A showed alteration in transcription of genes specifying several cellular processes including cell envelope turnover, cross-membrane transport, virulence, metabolism, and general stress response. The most highly induced gene was lrgA, encoding an antiholin-like product, which is induced in cells undergoing a collapse of Δψ. Consistent with the notion that LrgA modulates murein hydrolase activity, COL grown in the presence of amicoumacin A showed reduced autolysis, which was primarily caused by lower hydrolase activity. To gain further insight into the mechanism of action of amicoumacin A, a whole genome comparison of wild-type COL and amicoumacin A-resistant mutants isolated by a serial passage method was carried out. Single point mutations generating codon substitutions were uncovered in ksgA (encoding RNA dimethyltransferase), fusA (elongation factor G), dnaG (primase), lacD (tagatose 1,6-bisphosphate aldolase), and SACOL0611 (a putative glycosyl transferase). The codon substitutions in EF-G that cause amicoumacin A resistance and fusidic acid resistance reside in separate domains and do not bring about cross resistance. Taken together, these results suggest that amicoumacin A might cause perturbation of the cell membrane and lead to energy dissipation. Decreased rates of cellular metabolism including protein synthesis and DNA replication in resistant strains might allow cells to compensate for membrane dysfunction and thus increase cell survivability.


Asunto(s)
Antibacterianos/farmacología , Cumarinas/farmacología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Aldehído-Liasas/metabolismo , Membrana Celular/metabolismo , Supervivencia Celular , Codón , ADN Primasa/metabolismo , Farmacorresistencia Bacteriana , Ácido Fusídico/farmacología , Metiltransferasas/metabolismo , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor G de Elongación Peptídica/metabolismo , Mutación Puntual
8.
J Bacteriol ; 194(7): 1679-88, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22287527

RESUMEN

The NO-sensitive NsrR repressor of Bacillus subtilis, which carries a [4Fe-4S] cluster, controls transcription of nasD and hmp (class I regulation) under anaerobic conditions. Here, we describe another class of NsrR regulation (class II regulation) that controls a more diverse collection of genes. Base substitution analysis showed that [4Fe-4S]-NsrR recognizes a partial dyad symmetry within the class I cis-acting sites, whereas NO-insensitive interaction of NsrR with an A+T-rich class II regulatory site showed relaxed sequence specificity. Genome-wide transcriptome studies identified genes that are under the control of the class II NsrR regulation. The class II NsrR regulon includes genes controlled by both AbrB and Rok repressors, which also recognize A+T-rich sequences, and by the Fur repressor. Transcription of class II genes was elevated in an nsrR mutant during anaerobic fermentative growth with pyruvate. Although NsrR binding to the class II regulatory sites was NO insensitive in vitro, transcription of class II genes was moderately induced by NO, which involved reversal of NsrR-dependent repression, suggesting that class II repression is also NO sensitive. In all NsrR-repressed genes tested, the loss of NsrR repressor activity was not sufficient to induce transcription as induction required the ResD response regulator. The ResD-ResE signal transduction system is essential for activation of genes involved in aerobic and anaerobic respiration. This study indicated coordinated regulation between ResD and NsrR and uncovered a new role of ResD and NsrR in transcriptional regulation during anaerobiosis of B. subtilis.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Transcripción Genética , Anaerobiosis , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Factores de Transcripción/genética
9.
PLoS One ; 6(9): e25066, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949854

RESUMEN

Spx is a global regulator of genes that are induced by disulfide stress in Bacillus subtilis. The regulon that it governs is comprised of over 120 genes based on microarray analysis, although it is not known how many of these are under direct Spx control. Most of the Spx-regulated genes (SRGs) are of unknown function, but many encode products that are conserved in low %GC Gram-positive bacteria. Using a gene-disruption library of B. subtilis genomic mutations, the SRGs were screened for phenotypes related to Spx-controlled activities, such as poor growth in minimal medium and sensitivity to methyglyoxal, but nearly all of the SRG mutations showed little if any phenotype. To uncover SRG function, the mutations were rescreened in an spx mutant background to determine which mutant SRG allele would enhance the spx mutant phenotype. One of the SRGs, ytpQ was the site of a mutation that, when combined with an spx null mutation, elevated the severity of the Spx mutant phenotype, as shown by reduced growth in a minimal medium and by hypersensitivity to methyglyoxal. The ytpQ mutant showed elevated oxidative protein damage when exposed to methylglyoxal, and reduced growth rate in liquid culture. Proteomic and transcriptomic data indicated that the ytpQ mutation caused the derepression of the Fur and PerR regulons of B. subtilis. Our study suggests that the ytpQ gene, encoding a conserved DUF1444 protein, functions directly or indirectly in iron homeostasis. The ytpQ mutant phenotype mimics that of a fur mutation, suggesting a condition of low cellular iron. In vitro transcription analysis indicated that Spx stimulates transcription from the ytpPQR operon within which the ytpQ gene resides. The work uncovers a link between Spx and control of iron homeostasis.


Asunto(s)
Bacillus subtilis/genética , Disulfuros/metabolismo , Genes Reguladores/genética , Hierro/metabolismo , Mutación/genética , Operón/genética , Factores de Transcripción/genética , Bacillus subtilis/crecimiento & desarrollo , Secuencia de Bases , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Homeostasis , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Regiones Promotoras Genéticas/genética , Proteómica , ARN Bacteriano/genética , ARN Mensajero/genética , Proteínas Represoras , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
10.
Biochemistry ; 50(6): 1023-8, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21250657

RESUMEN

DevS and DosT from Mycobacterium tuberculosis (MTB) are paralogous heme-based sensor kinases that respond to hypoxia and to low concentrations of nitric oxide (NO). Both proteins work with the response regulator DevR as a two-component regulatory system to induce the dormancy regulon in MTB. While DevS and DosT are inactive when dioxygen is bound to the heme Fe(II) at their sensor domain, autokinase activity is observed in their heme Fe(II)-NO counterparts. To date, the conversion between active and inactive states and the reactivity of the heme-oxy complex toward NO have not been investigated. Here, we use stopped-flow UV-vis spectroscopy and rapid freeze quench resonance Raman spectroscopy to probe these reactions in DevS. Our data reveal that the heme-O(2) complex of DevS reacts efficiently with NO to produce nitrate and the oxidized Fe(III) heme through an NO dioxygenation reaction that parallels the catalytic reactions of bacterial flavohemoglobin and truncated hemoglobins. Autophosphorylation activity assays show that the Fe(III) heme state of DevS remains inactive but exhibits a high affinity for NO and forms an Fe(III)-NO complex that is readily reduced by ascorbate, a mild reducing agent. On the basis of these results, we conclude that upon exposure to low NO concentrations, the inactive oxy-heme complex of DevS is rapidly converted to the Fe(II)-NO complex in the reducing environment of living cells and triggers the initiation of dormancy.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium tuberculosis/enzimología , Óxido Nítrico/metabolismo , Protamina Quinasa/química , Proteínas Bacterianas/metabolismo , Compuestos Férricos/metabolismo , Hemo/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Protamina Quinasa/metabolismo
11.
Mol Microbiol ; 78(5): 1280-93, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21091510

RESUMEN

NsrR is a nitric oxide (NO)-sensitive transcription repressor that controls NO metabolism in a wide range of bacteria. In Bacillus subtilis, NsrR represses transcription of the nitrite reductase (nasDEF) genes that are under positive control of the ResD-ResE two-component signal transduction system. Derepression is achieved by reaction of NO with NsrR. Unlike some NsrR orthologues that were shown to contain a NO-sensitive [2Fe-2S] cluster, B. subtilis NsrR, when purified anaerobically either from aerobic or from anaerobic Escherichia coli and B. subtilis cultures, contains a [4Fe-4S] cluster. [4Fe-4S]-NsrR binds around the -35 element of the nasD promoter with much higher affinity than apo-NsrR and binding of [4Fe-4S]-NsrR, but not apo-protein, is sensitive to NO. RNA polymerase and phosphorylated ResD make a ternary complex at the nasD promoter and NsrR dissociates the preformed ternary complex. In addition to the -35 region, NsrR binds to two distinct sites of the upstream regulatory region where ResD also binds. These interactions, unlike the high-affinity site binding, do not depend on the NsrR [4Fe-4S] cluster and binding is not sensitive to NO, suggesting a role for apo-NsrR in transcriptional regulation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Óxido Nítrico/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Proteínas de Unión al ADN/genética , Datos de Secuencia Molecular , Unión Proteica , Factores de Transcripción/genética , Transcripción Genética
12.
PLoS One ; 5(1): e8664, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20084284

RESUMEN

BACKGROUND: Spx, an ArsC (arsenate reductase) family member, is a global transcriptional regulator of the microbial stress response and is highly conserved amongst Gram-positive bacteria. Bacillus subtilis Spx protein exerts positive and negative control of transcription through its interaction with the C-terminal domain of the RNA polymerase (RNAP) alpha subunit (alphaCTD). Spx activates trxA (thioredoxin) and trxB (thioredoxin reductase) in response to thiol stress, and bears an N-terminal C10XXC13 redox disulfide center that is oxidized in active Spx. METHODOLOGY/PRINCIPAL FINDINGS: The structure of mutant Spx(C10S) showed a change in the conformation of helix alpha4. Amino acid substitutions R60E and K62E within and adjacent to helix alpha4 conferred defects in Spx-activated transcription but not Spx-dependent repression. Electrophoretic mobility-shift assays showed alphaCTD interaction with trxB promoter DNA, but addition of Spx generated a supershifted complex that was disrupted in the presence of reductant (DTT). Interaction of alphaCTD/Spx complex with promoter DNA required the cis-acting elements -45AGCA-42 and -34AGCG-31 of the trxB promoter. The Spx(G52R) mutant, defective in alphaCTD binding, did not interact with the alphaCTD-trxB complex. Spx(R60E) not only failed to complex with alphaCTD-trxB, but also disrupted alphaCTD-trxB DNA interaction. CONCLUSIONS/SIGNIFICANCE: The results show that Spx and alphaCTD form a complex that recognizes the promoter DNA of an Spx-controlled gene. A conformational change during oxidation of Spx to the disulfide form likely alters the structure of Spx alpha helix alpha4, which contains residues that function in transcriptional activation and alphaCTD/Spx-promoter interaction. The results suggest that one of these residues, R60 of the alpha4 region of oxidized Spx, functions in alphaCTD/Spx-promoter contact but not in alphaCTD interaction.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Bacillus subtilis/metabolismo , Cristalización , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Mutación
13.
Biochemistry ; 48(51): 12133-44, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-19921776

RESUMEN

Sco-like proteins contain copper bound by two cysteines and a histidine residue. Although their function is still incompletely understood, there is a clear involvement with the assembly of cytochrome oxidases that contain the Cu(A) center in subunit 2, possibly mediating the transfer of copper into the Cu(A) binuclear site. We are investigating the reaction chemistry of BSco, the homologue from Bacillus subtilis. Our studies have revealed that BSco behaves more like a redox protein than a metallochaperone. The essential H135 residue that coordinates copper plays a role in stabilizing the Cu(II) rather than the Cu(I) form. When H135 is mutated to alanine, the oxidation rate of both hydrogen peroxide and one-electron outer-sphere reductants increases by 3 orders of magnitude, suggestive of a redox switch mechanism between the His-on and His-off conformational states of the protein. Imidazole binds to the H135A protein, restoring the N superhyperfine coupling in the EPR, but is unable to rescue the redox properties of wild-type Sco. These findings reveal a unique role for H135 in Sco function. We propose a hypothesis that electron transfer from Sco to the maturing oxidase may be essential for proper maturation and/or protection from oxidative damage during the assembly process. The findings also suggest that interaction of Sco with its protein partner(s) may perturb the Cu(II)-H135 interaction and thus induce a sensitive redox activity to the protein.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cobre/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación Missense , Secuencia de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Variación Genética , Cinética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Análisis Espectral
14.
J Bacteriol ; 191(18): 5690-6, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19633086

RESUMEN

Bacillus subtilis produces an anionic bacteriocin called subtilosin A that possesses antibacterial activity against certain gram-positive bacteria. In this study, we uncovered a hemolytic mutant of B. subtilis that produces an altered form of subtilosin A. The mutant bacteriocin, named subtilosin A1, has a replacement of threonine at position 6 with isoleucine. In addition to the hemolytic activity, subtilosin A1 was found to exhibit enhanced antimicrobial activity against specific bacterial strains. The B. subtilis albB mutant that does not produce a putative immunity peptide was more sensitive to both subtilosin A and subtilosin A1. A spontaneous suppressor mutation of albB that restored resistance to subtilosin A and subtilosin A1 was obtained. The sbr (subtilosin resistance) mutation conferring the resistance is not linked to the sboA-alb locus. The sbr mutation does not increase the resistance of B. subtilis to other cell envelope-targeted antimicrobial agents, indicating that the mutation specifically confers the resistance to subtilosins. The findings suggest possible bioengineering approaches for obtaining anionic bacteriocins with enhanced and/or altered bactericidal activity. Furthermore, future identification of the subtilosin-resistant mutation could provide insights into the mechanism of subtilosin A activity.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacología , Hemólisis/genética , Mutación , Péptidos Cíclicos/genética , Péptidos Cíclicos/farmacología , Sustitución de Aminoácidos , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Bacteriocinas/química , Bacteriocinas/metabolismo , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Conejos
15.
Biochemistry ; 47(47): 12532-9, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-18975917

RESUMEN

DevS is a heme-based sensor kinase required for sensing environmental conditions leading to nonreplicating persistence in Mycobacterium tuberculosis. Kinase activity is observed when the heme is a ferrous five-coordinate high-spin or six-coordinate low-spin CO or NO complex but is strongly inhibited in the oxy complex. Discrimination between these exogenous ligands has been proposed to depend on a specific hydrogen bond network with bound oxygen. Here we report resonance Raman data and autophosphorylation assays of wild-type and Y171F DevS in various heme complexes. The Y171F mutation eliminates ligand discrimination for CO, NO, and O2, resulting in equally inactive complexes. In contrast, the ferrous-deoxy Y171F variant exhibits autokinase activity equivalent to that of the wild type. Raman spectra of the oxy complex of Y171F indicate that the environment of the oxy group is significantly altered from that in the wild type. They also suggest that a solvent molecule in the distal pocket substitutes for the Tyr hydroxyl group to act as a poorer hydrogen bond donor to the oxy group. The wild-type CO and NO complexes exist as a major population in which the CO or NO groups are free of hydrogen bonds, while the Y171F mutation results in a mild increase in the distal pocket polarity. The Y171F mutation has no impact on the proximal environment of the heme, and the activity observed with the five-coordinate ferrous-deoxy wild type is conserved in the Y171F variant. Thus, while the absence of an exogenous ligand in the ferrous-deoxy proteins leads to a moderate kinase activity, interactions between Tyr171 and distal diatomic ligands turn the kinase activity on and off. The Y171F mutation disrupts the on-off switch and renders all states with a distal ligand inactive. This mechanistic model is consistent with Tyr171 being required for distal ligand discrimination, but nonessential for autophosphorylation activity.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis , Protamina Quinasa/química , Protamina Quinasa/metabolismo , Tirosina , Proteínas Bacterianas/genética , Ligandos , Mutación , Fosforilación , Protamina Quinasa/genética , Espectrofotometría Ultravioleta , Espectrometría Raman , Especificidad por Sustrato
16.
Biochemistry ; 47(49): 13084-92, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19006327

RESUMEN

In Bacillus subtilis, NsrR is required for the upregulation of ResDE-dependent genes in the presence of nitric oxide (NO). NsrR was shown to bind to the promoters of these genes and inhibit their transcription in vitro. NO relieves this inhibition by an unknown mechanism. Here, we use spectroscopic techniques (UV-vis, resonance Raman, and EPR) to show that anaerobically isolated NsrR from B. subtilis contains a [4Fe-4S](2+) cluster, which reacts with NO to form dinitrosyl iron complexes. This method of NO sensing is analogous to that of the FNR protein of Escherichia coli. The Fe-S cluster of NsrR is also reactive toward other exogenous ligands such as cyanide, dithiothreitol, and O(2). These results, together with the fact that there are only three cysteine residues in NsrR, suggest that the 4Fe-4S cluster contains a noncysteinyl labile ligand to one of the iron atoms, leading to high reactivity. Size exclusion chromatography and cross-linking experiments show that NsrR adopts a dimeric structure in its [4Fe-4S](2+) holo form as well as in the apo form. These findings provide a first stepping stone to investigate the mechanism of NO sensing in NsrR.

17.
Methods Enzymol ; 422: 448-64, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17628154

RESUMEN

Successful respiration in Bacillus subtilis using oxygen or nitrate as the terminal electron acceptor requires the ResD-ResE signal transduction system. Although transcription of ResDE-controlled genes is induced at the stationary phase of aerobic growth, it is induced to a higher extent upon oxygen limitation. Furthermore, maximal transcriptional activation requires not only oxygen limitation, but also nitric oxide (NO). Oxygen limitation likely results in conversion of the ResE sensor kinase activity from a phosphatase-dominant to a kinase-dominant mode. In addition, low oxygen levels promote the production and maintenance of NO during nitrate respiration, which leads to elimination of the repression exerted by the NO-sensitive transcriptional regulator NsrR. ResD, after undergoing ResE-mediated phosphorylation, interacts with the C-terminal domain of the alpha subunit of RNA polymerase to activate transcription initiation at ResDE-controlled promoters.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Transcripción Genética , Anaerobiosis , Bacillus subtilis/crecimiento & desarrollo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Modelos Moleculares , Óxido Nítrico/farmacología , Conformación Proteica , Transducción de Señal , Transcripción Genética/efectos de los fármacos
18.
J Bacteriol ; 189(5): 1745-55, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17189364

RESUMEN

The ResD-ResE signal transduction system is required for transcription of genes involved in aerobic and anaerobic respiration in Bacillus subtilis. Phosphorylated ResD (ResD approximately P) interacts with target DNA to activate transcription. A strong sequence similarity was detected in promoter regions of some ResD-controlled genes including fnr and resA. Single-base substitutions in the fnr and resA promoters were performed to determine a ResD-binding sequence. DNase I footprinting analysis indicated that ResD approximately P itself does not bind to fnr, but interaction of ResD approximately P with the C-terminal domain of the alpha subunit (alphaCTD) of RNA polymerase (RNAP) facilitates cooperative binding of ResD approximately P and RNAP, thereby increasing fnr transcription initiation. Consistent with this result, amino acid substitutions in alphaCTD, such as Y263A, K267A, A269I, or N290A, sharply reduced fnr transcription in vivo, and the K267A alphaCTD protein, unlike the wild-type protein, did not increase ResD approximately P binding to the fnr promoter. Amino acid residues of alphaCTD required for ResD-dependent fnr transcription, with the exception of N290, which may interact with DNA, constitute a distinct surface, suggesting that these residues likely interact with ResD approximately P.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/fisiología , Proteínas de Unión al ADN/fisiología , Regiones Promotoras Genéticas , Factores de Transcripción/fisiología , Transcripción Genética , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Secuencia de Bases , Proteínas de Unión al ADN/química , Desoxirribonucleasa I/farmacología , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína , Factores de Transcripción/química
19.
J Bacteriol ; 188(16): 5878-87, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16885456

RESUMEN

The ResD-ResE signal transduction system is essential for aerobic and anaerobic respiration in Bacillus subtilis. ResDE-dependent gene expression is induced by oxygen limitation, but full induction under anaerobic conditions requires nitrite or nitric oxide (NO). Here we report that NsrR (formerly YhdE) is responsible for the NO-dependent up-regulation of the ResDE regulon. The null mutation of nsrR led to aerobic derepression of hmp (flavohemoglobin gene) partly in a ResDE-independent manner. In addition to its negative role in aerobic hmp expression, NsrR plays an important role under anaerobic conditions for regulation of ResDE-controlled genes, including hmp. ResDE-dependent gene expression was increased by the nsrR mutation in the absence of NO, but the expression was decreased by the mutation when NO was present. Consequently, B. subtilis cells lacking NsrR no longer sense and respond to NO (and nitrite) to up-regulate the ResDE regulon. Exposure to NO did not significantly change the cellular concentration of NsrR, suggesting that NO likely modulates the activity of NsrR. NsrR is similar to the recently described nitrite- or NO-sensitive transcription repressors present in various bacteria. NsrR likely has an Fe-S cluster, and interaction of NO with the Fe-S center is proposed to modulate NsrR activity.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Óxido Nítrico/farmacología , Factores de Transcripción/metabolismo , Aerobiosis , Bacillus subtilis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mutación , Transcripción Genética , Regulación hacia Arriba
20.
J Bacteriol ; 188(17): 6415-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16923910

RESUMEN

A Bacillus subtilis culture incubated anaerobically in nitrate-containing medium lost viability during the first 3 days but recovered thereafter. A flavohemoglobin mutant showed very poor survival under these conditions unless the cells were prevented from carrying out nitrate respiration.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/fisiología , Hemoproteínas/fisiología , Anaerobiosis , Medios de Cultivo , Nitratos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA