Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38924358

RESUMEN

Honey bees play a pivotal role in shaping ecosystems and sustaining human health as both pollinators and producers of health-promoting products. However, honey bee colony mortality is on the rise globally, driven by various factors, including parasites, pesticides, habitat loss, poor nutrition, and climate change. This has far-reaching consequences for the environment, economy, and human welfare. While efforts to address these issues are underway, the current progress in electron paramagnetic resonance (EPR) instrumentation affords using the immense potential of this magnetic resonance technique to study small samples such as honey bees. This paper presents the pioneering 2D in vivo EPR imaging experiment on a honey bee, revealing the ongoing redox-status of bees' intestines. This way, by monitoring the spatio-temporal changes of the redox-active spin-probes' EPR signal, it is possible to gain access to valuable information on the course of ongoing bees' pathologies and the prospect of following-up on the efficiency of applied therapies. Employing a selection of diverse spin-probes could further reveal pH levels and oxygen concentrations in bee tissues, allowing a noninvasive assessment of bee physiology. This approach offers promising strategies for safeguarding pollinators and understanding their biology, fostering their well-being and ecological harmony.

2.
Antioxidants (Basel) ; 13(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38397741

RESUMEN

As part of this study, the mechanisms of the antioxidant activity of previously synthesized coumarin-trihydrobenzohydrazine derivatives were investigated: (E)-2,4-dioxo-3-(1-(2-(2″,3″,4″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (1) and (E)-2,4-dioxo-3-(1-(2-(3″,4″,5″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (2). The capacity of the compounds to neutralize HO• was assessed by EPR spectroscopy. The standard mechanisms of antioxidant action, Hydrogen Atom Transfer (HAT), Sequential Proton Loss followed by Electron Transfer (SPLET), Single-Electron Transfer followed by Proton Transfer (SET-PT), and Radical Adduct/Coupling Formation (RAF/RCF) were examined using the QM-ORSA methodology. It was estimated that the newly synthesized compounds, under physiological conditions, exhibited antiradical activity via SPLET and RCF mechanisms. Based on the estimated overall rate constants (koverall), it can be concluded that 2 exhibited a greater antiradical capacity. The obtained values indicated a good correlation with the EPR spectroscopy results. Both compounds exhibit approximately 1.5 times more activity in comparison to the precursor compound used in the synthesis (gallic acid).

3.
Antioxidants (Basel) ; 12(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37627480

RESUMEN

Sorghum grain (Sorghum bicolor L. Moench) is a gluten-free cereal with excellent nutritional value and is a good source of antioxidants, including polyphenols, as well as minerals with proven health benefits. Herein, the phenolic composition, elemental profile, and antioxidant activity of sixteen food-grade sorghum grains (S1-S16) grown under agroecological conditions in Serbia were determined. Nine phenolic compounds characteristic of sorghum grains, such as luteolinidin, 5-methoxyluteolinidin, luteolidin derivative, luteolidin glucoside, apigeninidin, 7-methoxyapigeninidin, apigeninidin glucoside, and cyanidin derivative, were quantified. The antioxidant potential of the analyzed sorghum grains was evaluated by UV/Vis (DPPH, ABTS, and FRAP) and Electron Paramagnetic Resonance spectroscopy (hydroxyl and ascorbyl radical scavenging assays). The content of macro- and microelements was determined by Inductively Coupled Plasma Optical Emission spectroscopy. Theoretical daily intakes of selected major and trace elements were assessed and compared with the Recommended Daily Allowance or Adequate Intake. Sample S8 had the highest amount of phenolic compounds, while S4, S6, and S8 exhibited the strongest antioxidative potential. The sorghum studied could completely satisfy the daily needs of macro- (K, Mg, and P) and microelements (Se, Zn, Fe). Pattern recognition techniques confirmed the discrimination of samples based on phenolic profile and elemental analysis and recognized the main markers responsible for differences between the investigated samples. The reaction between hydroxyl radicals and luteolinidin/apigeninidin was investigated by Density Functional Theory and thermodynamically preferred mechanism was determined.

4.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511579

RESUMEN

Coumarin derivatives are a class of compounds with pronounced biological activities that depend primarily on the present substituents. Four 3-methoxycarbonylcoumarin derivatives with substituents of different electron-donating/electron-withdrawing abilities (Br, NO2, OH, and OMe) were investigated structurally by NMR, IR, and UV-VIS spectroscopies and density functional theory methods. The appropriate level of theory (B3LYP-D3BJ/6-311++G(d,p) was selected after comparing similar compounds' experimental and theoretical structural parameters. The natural bond orbital and quantum theory of atoms in molecules were employed to investigate the intramolecular interactions governing stability. The electronic effects of substituents mostly affected the aromatic ring that the substituents are directly attached to. The antioxidant properties were investigated by electron paramagnetic resonance spectroscopy towards HO•, and the percentages of reduction were between 13% (6-Br) and 23% (6-OMe). The protein binding properties towards transport proteins were assessed by spectrofluorimetry, molecular docking, and molecular dynamics (MD). The experimentally determined binding energies were well reproduced by molecular docking, showing that the spontaneity of ibuprofen binding was comparable to the investigated compounds. The flexibility of HSA in MD simulations depended on the substituents. These results proved the importance of electronic effects for the protein binding affinities and antioxidant properties of coumarin derivatives.


Asunto(s)
Antioxidantes , Electrónica , Modelos Moleculares , Antioxidantes/farmacología , Unión Proteica , Simulación del Acoplamiento Molecular , Espectroscopía de Resonancia Magnética
5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37259391

RESUMEN

Spiked centaury (Centaurium spicatum) is a well-known medicinal plant from the Mediterranean region with various bioactivities, but there are no studies addressing the use of different solvent systems to improve its pharmacological potential. Nine extraction procedures were adapted to study the effects of solvent composition on the content of bioactive compounds in C. spicatum extracts and on corresponding bioactivities. Targeted metabolomics was performed to obtain information on the chemical composition of extracts. Ethanol-water-based extraction procedures were the most efficient in isolating polyphenols, while less polar butanol extract contained the highest amount of iridoids. Antioxidant potential analysis revealed stronger activity in extracts with higher polyphenol content. Bacillus cereus and Staphylococus aureus were designated as the most sensitive bacterial strains to the activity of extracts, while among the micromycetes tested, Penicillium funiculosum was the most susceptible strain. Butanol extract showed antivirulence potential on Candida albicans morphological transition from yeast to hyphal form, and selected extracts were effective against biofilm formation in two Candida species. All the extracts tested in this study showed no cytotoxic activity to immortalize human skin keratinocyte cell line (HaCaT), whereas extracts obtained by ethanol-water extraction stand out for their potent wound healing effects. Moreover, the influence of the extraction solvent system on various bioactivities of C. spicatum is reported herein for the first time. Overall, the results presented in this study promote the use of C. spicatum as a source of natural products with potential antioxidant, wound healing, and antimicrobial applications that are potentially safe for human use.

6.
Antioxidants (Basel) ; 12(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36829905

RESUMEN

The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated.

7.
Plants (Basel) ; 11(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36559677

RESUMEN

Phenolic compounds of 25 newly introduced strawberry cultivars were profiled using spectrophotometry, electron paramagnetic resonance (EPR) spectroscopy, and high-performance liquid chromatography-mass spectrometry. Total phenolic and anthocyanin content (TPC and TACY, respectively), as well as vitamin C, and concentrations of individual phenolic compounds in fruits were evaluated to identify the most promising cultivars according to their phenolic profile. The highest values of TPC, TACY, and vitamin C were recorded in 'Premy' (1.53 mg eq GA g-1 FW), 'Sandra' (30.60 mg eq Pg-3-g 100 g-1 FW), and 'Laetitia' (56.32 mg 100 g-1 FW), respectively. The DPPH and •OH radicals scavenging activity of fruit methanolic extracts was estimated using EPR spectroscopy. All cultivars are almost uniformly effective in the scavenging of •OH radical, while 'Tea', 'Premy', and 'Joly' were marked as highly potent cultivars (over 70%) in terms of DPPH-antiradical activity. Specific peroxidase activities were the highest in 'Garda', 'Federica', and 'Rumba' (0.11, 0.08, and 0.06 U mg-1 prot, respectively). 'Laetitia', 'Joly', 'Arianna', 'Tea', and 'Mila' cultivars were distinguished from others as the richest concerning almost all flavonoids and phenolic acids, including some other parameters of bioactivity. These cultivars could be recommended to consumers as functional fruit foods.

8.
Pharmaceutics ; 14(6)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35745747

RESUMEN

This study shows the potential of a thermally induced human serum albumin (HSA) hydrogel to serve as a drug depot for sustained release of a highly cytotoxic modified paullone ligand bearing a TEMPO free radical (HL). The binding of HL to HSA was studied by electron paramagnetic resonance (EPR) spectroscopy and imaging. The EPR protocol was also implemented for the study of matrix degradation, and ligand diffusion rate, in two additional spin-labeled hydrogels, containing 5-doxylstearate and 3-carbamoyl-proxyl. The results showed that the hydrogel is an efficient HL reservoir as it retained 60% of the ligand during 11 days of dialysis in physiological saline. Furthermore, upon incubation with Colo 205 human colon adenocarcinoma cells for 3 days, the HL/HSA hydrogel did not exhibit cytotoxic activity, demonstrating that it is also an efficient ligand depot in the presence of living cells. It was observed that the percentage of HL release is independent of its initial concentration in the hydrogel, suggesting that HSA possesses a specific binding site for the ligand, most likely Sudlow site 2, as predicted by molecular docking. The intrinsic property of albumin to bind and transport various substances, including hydrophobic drugs, may be fine-tuned by appropriate physical/chemical hydrogel preparation procedures, providing optimal drug delivery.

9.
Free Radic Biol Med ; 177: 167-180, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34678419

RESUMEN

We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.


Asunto(s)
Grafito , Neuroblastoma , Puntos Cuánticos , Antioxidantes/farmacología , Apoptosis , Autofagia , Línea Celular Tumoral , Humanos , Estrés Oxidativo
10.
Photochem Photobiol Sci ; 20(8): 1087-1098, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34398442

RESUMEN

In this study, C-doped TiO2 nanoparticles (C-TiO2) were prepared and tested as a photosensitizer for visible-light-driven photodynamic therapy against cervical cancer cells (HeLa). X-ray diffraction and Transmission Electron Microscopy confirmed the anatase form of nanoparticles, spherical shape, and size distribution from 5 to 15 nm. Ultraviolet-visible light spectroscopy showed that C doping of TiO2 enhances the optical absorption in the visible light range caused by a bandgap narrowing. The photo-cytotoxic activity of C-TiO2 was investigated in vitro against HeLa cells. The lack of dark cytotoxicity indicates good biocompatibility of C-TiO2. In contrast, a combination with blue light significantly reduced the survival of HeLa cells: illumination only decreased cell viability by 30% (15 min of illumination, 120 µW power), and 60% when HeLa cells were preincubated with C-TiO2. We have also confirmed blue light-induced C-TiO2-catalyzed generation of reactive oxygen species in vitro and intracellularly. Oxidative stress triggered by C-TiO2/blue light was the leading cause of HeLa cell death. Fluorescent labeling of treated HeLa cells showed distinct morphological changes after the C-TiO2/blue light treatment. Unlike blue light illumination, which caused the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing, a combination of C-TiO2/blue light leads to controlled cell death, thus providing a better outcome of local anticancer therapy.


Asunto(s)
Carbono/química , Nanopartículas , Fototerapia , Titanio/química , Titanio/farmacología , Neoplasias del Cuello Uterino/patología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Terapia Combinada , Femenino , Células HeLa , Humanos
11.
Curr Alzheimer Res ; 18(1): 25-34, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33761860

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive decline and total brain atrophy. Despite the substantial scientific effort, the pathological mechanisms underlying neurodegeneration in AD are currently unknown. In most studies, amyloid ß peptide has been considered the key pathological change in AD. However, numerous Aß-targeting treatments have failed in clinical trials. This implies the need to shift the research focus from Aß to other pathological features of the disease. OBJECTIVE: The aim of this study was to examine the interplay between mitochondrial dysfunction, oxidative stress and blood-brain barrier (BBB) disruption in AD pathology, using a novel approach that involves the application of electron paramagnetic resonance (EPR) spectroscopy. METHODS: In vivo and ex vivo EPR spectroscopy using two spin probes (aminoxyl radicals) exhibiting different cell-membrane and BBB permeability were employed to assess BBB integrity and brain tissue redox status in the 5xFAD mouse model of AD. In vivo spin probe reduction decay was analyzed using a two-compartment pharmacokinetic model. Furthermore, 15 K EPR spectroscopy was employed to investigate the brain metal content. RESULTS: This study has revealed an altered brain redox state, BBB breakdown, as well as ROS-mediated damage to mitochondrial iron-sulfur clusters, and up-regulation of MnSOD in the 5xFAD model. CONCLUSION: The EPR spin probes were shown to be excellent in vivo reporters of the 5xFAD neuronal tissue redox state, as well as the BBB integrity, indicating the importance of in vivo EPR spectroscopy application in preclinical studies of neurodegenerative diseases.

12.
J Liposome Res ; 30(3): 218-226, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31146614

RESUMEN

The liposomal integration method, in conjunction with electron paramagnetic resonance (EPR) spectroscopy, has been presented for the investigation of antioxidant activity of selected water-insoluble compound towards biologically relevant free radicals. This method was applied to avarol, a sesquiterpenoid hydroquinone isolated from the marine sponge Dysidea avara. The antioxidant activity of water-insoluble avarol towards •OH, O2•- and NO• radicals was attained by its incorporation into the DPPC liposomes bilayer, and towards ascorbyl radicals in the organic solvent. Avarol's activity towards •OH, O2•-, NO• and ascorbyl radicals was 86.2%, 50.9%, 23.6% and 61.8%, respectively, showing its significant radical scavenging potential.


Asunto(s)
Antioxidantes/farmacología , Radicales Libres/antagonistas & inhibidores , Sesquiterpenos/farmacología , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Dysidea/química , Liposomas , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Solubilidad , Agua/química
13.
J Comput Chem ; 39(23): 1868-1877, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-29799128

RESUMEN

Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc.

14.
J Phys Chem A ; 120(39): 7704-7713, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27626138

RESUMEN

Stacking interactions in thymine dimers are studied with density functional theory. According to our calculations, six dimers of comparable stability can be prepared at low temperature, but dimerization is impossible at room temperature due to the large entropy contribution that accompanies it. Analysis of vibrational anharmonic coupling terms shows that each of the dimers exhibits distinct vibrational dynamics. Properties of electron density in the intermolecular region are used to analyze neutral stacked species and their ionized forms. Bond paths and critical points in the intermolecular region are identified, but a simple relationship between binding energy and total electron density in the intermolecular critical points could not be found due to an uneven electron distribution in the binding region. The reduced density gradient was confirmed to be a useful tool for analysis of weak stacking interactions. Those interactions also affect vertical and adiabatic ionization energies, which are computed to be slightly lower for the dimers compared to the monomer.


Asunto(s)
Modelos Químicos , Timina/química , Dimerización , Electrones , Estructura Molecular , Dímeros de Pirimidina , Temperatura , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...