RESUMEN
Peptaibols are a class of short peptides, typically 7 to 20 amino acids long, characterized by noncanonical amino acid residues such as aminoisobutyric acid (Aib). Although the helix length is shorter than the membrane thickness, the 11-residue peptaibol trichorovin-XII (TV-XII) can form ion channels in membranes. Assuming that a higher proportion of isoleucine (Ile) relative to leucine (Leu) residues is crucial for maintaining the ion channel activity of TV-XII, peptide analogs of TV-XII with varying Ile content were designed, synthesized, and evaluated. The secondary structure of all derivatives under hydrophobic conditions was confirmed by CD measurement as an α-helix-like ß-bend ribbon spiral structure. The most stable ion channel activity was found in compound 4a with maximum Ile. Furthermore, the C-terminal Ile analog showed greater ion channel activity compared to the Leu analog. This suggests that the choice between Leu and Ile can influence the expression of ion channel activity, which will be crucial for the de novo designed functional peptides.