Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Genet Metab ; 142(3): 108497, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763041

RESUMEN

Krabbe disease (KD) is a rare inherited demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase. Most patients with KD exhibit fatal cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before the age of 2-4 years. We have previously reported that primary OLs isolated from the brains of twitcher (twi) mice, an authentic mouse model of KD, have cell-autonomous developmental defects and undergo apoptotic death accompanied by abnormal accumulation of psychosine, an endogenous cytotoxic lyso-derivative of GalCer. In this study, we aimed to investigate the effects of the preclinical promyelinating drugs clemastine and Sob-AM2 on KD OL pathologies using primary OLs isolated from the brains of twi mice. Both agents specifically prevented the apoptotic death observed in twi OLs. However, while Sob-AM2 showed higher efficacy in restoring the impaired differentiation and maturation of twi OLs, clemastine more potently reduced the endogenous psychosine levels. These results present the first preclinical in vitro data, suggesting that clemastine and Sob-AM2 can act directly and distinctly on OLs in KD and ameliorate their cellular pathologies associated with myelin degeneration.


Asunto(s)
Apoptosis , Clemastina , Modelos Animales de Enfermedad , Leucodistrofia de Células Globoides , Oligodendroglía , Psicosina , Animales , Leucodistrofia de Células Globoides/patología , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/tratamiento farmacológico , Oligodendroglía/patología , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Ratones , Clemastina/farmacología , Apoptosis/efectos de los fármacos , Psicosina/análogos & derivados , Psicosina/metabolismo , Diferenciación Celular/efectos de los fármacos , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Células Cultivadas
2.
Mol Biol Rep ; 51(1): 106, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227057

RESUMEN

BACKGROUND: ARF (ADP-ribosylation factor) GTPases are major regulators of intracellular trafficking, and classified into 3 groups (Type I - III), among which the type I group members, ARF1 and 3, are responsible genes for neurodevelopmental disorders. METHODS: In this study, we analysed the expression of Type I ARFs ARF1-3 during mouse brain development using biochemical and morphological methods. RESULTS: Western blotting analyses revealed that ARF1-3 are weakly expressed in the mouse brain at embryonic day 13 and gradually increase until postnatal day 30. ARF1-3 appear to be abundantly expressed in various telencephalon regions. Biochemical fractionation studies detected ARF1-3 in the synaptosome fraction of cortical neurons containing both pre- and post-synapses, however ARF1-3 were not observed in post-synaptic compartments. In immunohistochemical analyses, ARF1-3 appeared to be distributed in the cytoplasm and dendrites of cortical and hippocampal neurons as well as in the cerebellar molecular layer including dendrites of Purkinje cells and granule cell axons. Immunofluorescence in primary cultured hippocampal neurons revealed that ARF1-3 are diffusely distributed in the cytoplasm and dendrites with partial colocalization with a pre-synaptic marker, synaptophysin. CONCLUSIONS: Overall, our results support the notion that ARF1-3 could participate in vesicle trafficking both in the dendritic shaft (excluding spines) and axon terminals (pre-synaptic compartments).


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Animales , Ratones , Factores de Ribosilacion-ADP/genética , Neuronas , Axones , Cerebelo
3.
Dev Neurosci ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906993

RESUMEN

INTRODUCTION: CtBP1 (C-terminal-binding protein 1) is a multi-functional protein with well-established roles as a transcriptional co-repressor in the nucleus and a regulator of membrane fission in the cytoplasm. Although CtBP1 gene abnormalities have been reported to cause neurodevelopmental disorders, the physiological role and expression profile of CtBP1 remains to be elucidated. METHODS: In this study, we used biochemical, immunohistochemical and immunofluorescence methods to analyze the expression of CtBP1 during mouse brain development. RESULTS: Western blotting analyses revealed that CtBP1 appeared to be expressed mainly in the central nervous system throughout the developmental process. In immunohistochemical analyses, region-specific nuclear as well as weak cytoplasmic distribution of CtBP1 was observed in telencephalon at embryonic day (E)15 and E17. It is of note that CtBP1 was barely detected in axons, but observed in the nucleus of oligodendrocytes in the white matter at E17. As to cerebellum at postnatal day 30, CtBP1 appeared to be expressed in the nucleus and cytoplasm of Purkinje cells, the nucleus of granule cells and cells in the molecular layer (ML), and the ML per se where granule cell axons and Purkinje cell dendrites are enriched. In addition, CtBP1 was detected in the cerebellar nuclei. CONCLUSION: The obtained results suggest involvement of CtBP1 in brain function.

4.
Med Mol Morphol ; 56(4): 266-273, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37402055

RESUMEN

WAC is an adaptor protein involved in gene transcription, protein ubiquitination, and autophagy. Accumulating evidence indicates that WAC gene abnormalities are responsible for neurodevelopmental disorders. In this study, we prepared anti-WAC antibody, and performed biochemical and morphological characterization focusing on mouse brain development. Western blotting analyses revealed that WAC is expressed in a developmental stage-dependent manner. In immunohistochemical analyses, while WAC was visualized mainly in the perinuclear region of cortical neurons at embryonic day 14, nuclear expression was detected in some cells. WAC then came to be enriched in the nucleus of cortical neurons after birth. When hippocampal sections were stained, nuclear localization of WAC was observed in Cornu ammonis 1 - 3 and dentate gyrus. In cerebellum, WAC was detected in the nucleus of Purkinje cells and granule cells, and possibly interneurons in the molecular layer. In primary cultured hippocampal neurons, WAC was distributed mainly in the nucleus throughout the developing process while it was also localized at perinuclear region at 3 and 7 days in vitro. Notably, WAC was visualized in Tau-1-positive axons and MAP2-positive dendrites in a time-dependent manner. Taken together, results obtained here suggest that WAC plays a crucial role during brain development.


Asunto(s)
Trastornos del Neurodesarrollo , Neuronas , Ratones , Animales , Neuronas/metabolismo , Axones , Hipocampo/metabolismo , Encéfalo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo
5.
Biomolecules ; 13(5)2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37238632

RESUMEN

22q11.2 deletion syndrome (22q11.2DS) is associated with a high risk of developing various psychiatric and developmental disorders, including schizophrenia and early-onset Parkinson's disease. Recently, a mouse model of this disease, Del(3.0Mb)/+, mimicking the 3.0 Mb deletion which is most frequently found in patients with 22q11.2DS, was generated. The behavior of this mouse model was extensively studied and several abnormalities related to the symptoms of 22q11.2DS were found. However, the histological features of their brains have been little addressed. Here we describe the cytoarchitectures of the brains of Del(3.0Mb)/+ mice. First, we investigated the overall histology of the embryonic and adult cerebral cortices, but they were indistinguishable from the wild type. However, the morphologies of individual neurons were slightly but significantly changed from the wild type counterparts in a region-specific manner. The dendritic branches and/or dendritic spine densities of neurons in the medial prefrontal cortex, nucleus accumbens, and primary somatosensory cortex were reduced. We also observed reduced axon innervation of dopaminergic neurons into the prefrontal cortex. Given these affected neurons function together as the dopamine system to control animal behaviors, the impairment we observed may explain a part of the abnormal behaviors of Del(3.0Mb)/+ mice and the psychiatric symptoms of 22q11.2DS.


Asunto(s)
Síndrome de DiGeorge , Enfermedad de Parkinson , Esquizofrenia , Animales , Ratones , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/complicaciones , Síndrome de DiGeorge/diagnóstico , Esquizofrenia/patología , Encéfalo/patología , Enfermedad de Parkinson/patología , Corteza Prefrontal
6.
Mol Brain ; 16(1): 20, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747195

RESUMEN

NLGN4X was identified as a single causative gene of rare familial nonsyndromic autism for the first time. It encodes the postsynaptic membrane protein Neuroligin4 (NLGN4), the functions and roles of which, however, are not fully understood due to the lack of a closely homologous gene in rodents. It has been confirmed only recently that human NLGN4 is abundantly expressed in the cerebral cortex and is localized mainly to excitatory synapses. However, the detailed histological distribution of NLGN4, which may have important implications regarding the relationships between NLGN4 and autistic phenotypes, has not been clarified. In this study, we raised specific monoclonal and polyclonal antibodies against NLGN4 and examined the distribution of NLGN4 in developing and developed human brains by immunohistochemistry. We found that, in the brain, NLGN4 is expressed almost exclusively in neurons, in which it has a widespread cytoplasmic pattern of distribution. Among various types of neurons with NLGN4 expression, we identified consistently high expression of NLGN4 in hypothalamic oxytocin (OXT)/vasopressin (AVP)-producing cells. Quantitative analyses revealed that the majority of OXT/AVP-producing neurons expressed NLGN4. NLGN4 signals in other large neurons, such as pyramidal cells in the cerebral cortex and hippocampus as well as neurons in the locus coeruleus and the raphe nucleus, were also remarkable, clearly contrasting with no or scarce signals in Purkinje cells. These data suggest that NLGN4 functions in systems involved in intellectual abilities, social abilities, and sleep and wakefulness, impairments of which are commonly seen in autism.


Asunto(s)
Trastorno Autístico , Humanos , Arginina Vasopresina , Trastorno Autístico/genética , Hipotálamo/metabolismo , Neuronas/metabolismo , Oxitocina/metabolismo , Fenotipo , Sinapsis/metabolismo
7.
Hum Genome Var ; 10(1): 3, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702846

RESUMEN

Congenital tooth agenesis is one of the most common anomalies in humans. Many genetic factors are involved in tooth development, including MSX1, PAX9, WNT10A, and LRP6. Thus, mutations in these genes can cause congenital tooth agenesis in humans. In this study, we identified a novel nonsense WNT10A variant, NM_025216.3(WNT10A_v001):c.1090A > T, which produces a C-terminal truncated gene product, p.(Lys364*), in a sporadic form of congenital tooth agenesis. The variant was not found in the healthy parents and thus was considered to cause congenital tooth agenesis in the case.

8.
J Neurosci ; 41(43): 8887-8903, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34518307

RESUMEN

Precise control of neuronal migration is required for the laminar organization of the neocortex and critical for brain function. We previously reported that the acute disruption of the Stk25 gene (Stk25 conditional knock-out; cKO) during mouse embryogenesis causes anomalous neuronal migration in the neocortex, but paradoxically the Stk25 cKO did not have a cortical phenotype, suggesting some forms of compensation exist. In this study, we report that MST3, another member of the GCKIII subgroup of the Ste20-like kinase family, compensates for loss of Stk25 and vice versa with sex independent manner. MST3 overexpression rescued neuronal migration deficit and abnormal axonogenesis in Stk25 cKO brains. Mechanistically, STK25 leads to Rac1 activation and reduced RhoA levels in the developing brain, both of which are required to fully restore neuronal migration in the Stk25 cKO brain. Abnormal migration phenotypes are also rescued by overexpression of Bacurd1and Cul3, which target RhoA for degradation, and activate Rac1. This study reveals that MST3 upregulation is capable of rescuing acute Stk25 deficiency and resolves details of signaling downstream STK25 required for corticogenesis both common to and distinct from MST3 signaling.SIGNIFICANCE STATEMENT Proper neuronal migration during cortical development is required for normal neuronal function. Here, we show that STK25 and MST3 kinases regulate neuronal migration and polarization in a mutually compensatory manner. Furthermore, STK25 balances Rac1 activity and RhoA level through forming complexes with α-PIX and ß-PIX, GTPase regulatory enzymes, and Cullin3-Bacurd1/Kctd13, a pair of RhoA ubiquitination molecules in a kinase activity-independent manner. Our findings demonstrate the importance of overlapping and unique roles of STK25 and MST3 to regulate Rho GTPase activities in cortical development.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rho/genética
9.
Hum Genome Var ; 8(1): 29, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285200

RESUMEN

Congenital tooth agenesis is a common anomaly in humans. We investigated the etiology of human tooth agenesis by exome analysis in Japanese patients, and found a previously undescribed heterozygous deletion (NM_002448.3(MSX1_v001):c.433_449del) in the first exon of the MSX1 gene. The deletion leads to a frameshift and generates a premature termination codon. The truncated form of MSX1, namely, p.(Trp145Leufs*24) lacks the homeodomain, which is crucial for transcription factor function.

10.
Hum Genome Var ; 8(1): 30, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285199

RESUMEN

Congenital tooth agenesis is a common anomaly in human development. We performed exome sequence analysis of genomic DNA collected from Japanese patients with tooth agenesis and their relatives. We found a novel single-nucleotide insertion in the LRP6 gene, the product of which is involved in Wnt/ß-catenin signaling as a coreceptor for Wnt ligands. The single-nucleotide insertion results in a premature stop codon in the extracellular region of the encoded protein.

11.
Brain Pathol ; 31(5): e12951, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33822434

RESUMEN

Krabbe disease (KD), also known as globoid cell leukodystrophy, is an inherited demyelinating disease caused by the deficiency of lysosomal galactosylceramidase (GALC) activity. Most of the patients are characterized by early-onset cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before 2 years of age. However, the mechanisms of molecular pathogenesis in the developing OLs before death and the exact causes of white matter degeneration remain largely unknown. We have recently reported that OLs of twitcher mouse, an authentic mouse model of KD, exhibit developmental defects and endogenous accumulation of psychosine (galactosylsphingosine), a cytotoxic lyso-derivative of galactosylceramide. Here, we show that attenuated expression of microRNA (miR)-219, a critical regulator of OL differentiation and myelination, mediates cellular pathogenesis of KD OLs. Expression and functional activity of miR-219 were repressed in developing twitcher mouse OLs. By using OL precursor cells (OPCs) isolated from the twitcher mouse brain, we show that exogenously supplemented miR-219 effectively rescued their cell-autonomous developmental defects and apoptotic death. miR-219 also reduced endogenous accumulation of psychosine in twitcher OLs. Collectively, these results highlight the role of the reduced miR-219 expression in KD pathogenesis and suggest that miR-219 has therapeutic potential for treating KD OL pathologies.


Asunto(s)
Leucodistrofia de Células Globoides/patología , MicroARNs/genética , Oligodendroglía/patología , Psicosina/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Modelos Animales de Enfermedad , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Ratones Transgénicos , Oligodendroglía/metabolismo
12.
Neurosci Res ; 163: 63-67, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32194144

RESUMEN

Impaired social facilitation was reported in autism spectrum disorder (ASD) children. However, behavioral analysis methods of social facilitation for ASD model have not been reported. We developed a novel breeding home cage for social facilitation. Voluntary exercise of more social C57BL/6 J mice was significantly increased in the presence of observer mouse compared to that in the absence of observer mouse. In contrast, the presence of observer mouse did not affect voluntary exercise of less social BALB/cCrSlc mice. These suggest that BALB/cCrSlc mice, a mouse model of ASD, exhibited impaired social facilitation. Our method would provide novel clues for ASD pathophysiology.


Asunto(s)
Trastorno del Espectro Autista , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Conducta Social , Facilitación Social
13.
Mol Brain ; 13(1): 80, 2020 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448361

RESUMEN

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, a rare congenital anomaly syndrome characterized by intellectual disability, brain malformation, facial dysmorphism, musculoskeletal abnormalities, and some visceral malformations is caused by de novo heterozygous mutations of the SON gene. The nuclear protein SON is involved in gene transcription and RNA splicing; however, the roles of SON in neural development remain undetermined. We investigated the effects of Son knockdown on neural development in mice and found that Son knockdown in neural progenitors resulted in defective migration during corticogenesis and reduced spine density on mature cortical neurons. The induction of human wild-type SON expression rescued these neural abnormalities, confirming that the abnormalities were caused by SON insufficiency. We also applied truncated SON proteins encoded by disease-associated mutant SON genes for rescue experiments and found that a truncated SON protein encoded by the most prevalent SON mutant found in ZTTK syndrome rescued the neural abnormalities while another much shorter mutant SON protein did not. These data indicate that SON insufficiency causes neuronal migration defects and dendritic spine abnormalities, which seem neuropathological bases of the neural symptoms of ZTTK syndrome. In addition, the results support that the neural abnormalities in ZTTK syndrome are caused by SON haploinsufficiency independent of the types of mutation that results in functional or dysfunctional proteins.


Asunto(s)
Anomalías Múltiples/genética , Movimiento Celular , Proteínas de Unión al ADN/genética , Espinas Dendríticas/patología , Técnicas de Silenciamiento del Gen , Proteínas Nucleares/genética , Animales , Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Ratones , Mutación/genética , Proteínas Nucleares/metabolismo , Células Piramidales/metabolismo , Síndrome
14.
Mol Genet Genomic Med ; 7(7): e00698, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31106992

RESUMEN

BACKGROUND: The tricarboxylic acid (TCA) cycle is a sequence of catabolic reactions within the mitochondrial matrix, and is a central pathway for cellular energy metabolism. Genetic defects affecting the TCA cycle are known to cause severe multisystem disorders. METHODS: We performed whole exome sequencing of genomic DNA of a patient with progressive cerebellar and cerebral atrophy, hypotonia, ataxia, seizure disorder, developmental delay, ophthalmological abnormalities and hearing loss. We also performed biochemical studies using patient fibroblasts. RESULTS: We identified new compound heterozygous mutations (c.1534G > A, p.Asp512Asn and c.1997G > C, p.Gly666Ala) in ACO2, which encodes aconitase 2, a component of the TCA cycle. In patient fibroblasts, the aconitase activity was reduced to 15% of that of the control, and the aconitase 2 level decreased to 36% of that of the control. As such a decrease in aconitase 2 in patient fibroblasts was partially restored by proteasome inhibition, mutant aconitase 2 was suggested to be relatively unstable and rapidly degraded after being synthesized. In addition, the activity of the father-derived variant of aconitase 2 (p.Gly666Ala), which had a mutation near the active center, was 55% of that of wild-type. CONCLUSION: The marked reduction of aconitase activity in patient fibroblasts was due to the combination of decreased aconitase 2 amount and activity due to mutations. Reduced aconitase activity directly suppresses the TCA cycle, resulting in mitochondrial dysfunction, which may lead to symptoms similar to those observed in mitochondrial diseases.


Asunto(s)
Aconitato Hidratasa/genética , Encefalopatías/genética , Cerebelo/patología , Cerebro/patología , Mutación , Aconitato Hidratasa/metabolismo , Atrofia/genética , Atrofia/patología , Encefalopatías/patología , Células Cultivadas , Cerebelo/metabolismo , Cerebro/metabolismo , Preescolar , Femenino , Fibroblastos/metabolismo , Células HEK293 , Heterocigoto , Humanos
15.
Biochem Cell Biol ; 96(4): 483-489, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29156143

RESUMEN

MSX1 is one of the homeoproteins with the homeodomain (HD) sequence, which regulates proliferation and differentiation of mesenchymal cells. In this study, we investigated the nuclear localization signal (NLS) in the MSX1 HD by deletion and amino acid substitution analyses. The web-based tool NLStradamus predicted 2 putative basic motifs in the N- and C-termini of the MSX1 HD. Green fluorescent protein (GFP) chimera studies revealed that NLS1 (161RKHKTNRKPR170) and NLS2 (216NRRAKAKR223) were independently insufficient for robust nuclear localization. However, they can work cooperatively to promote nuclear localization of MSX1, as was shown by the 2 tandem NLS motifs partially restoring functional NLS, leading to a significant nuclear accumulation of the GFP chimera. These results demonstrate a unique NLS motif in MSX1, which consists of an essential single core motif in helix-I, with weak potency, and an auxiliary subdomain in helix-III, which alone does not have nuclear localization potency. Additionally, other peptide sequences, other than predicted 2 motifs in the spacer, may be necessary for complete nuclear localization in MSX1 HD.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Factor de Transcripción MSX1/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Línea Celular , Proteínas de Homeodominio/genética , Humanos , Señales de Localización Nuclear/metabolismo
16.
Hum Genome Var ; 4: 17047, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29367877

RESUMEN

It has been reported that dozens of WNT10A variants are associated with human isolated tooth agenesis, however, little is known about the precise phenotypes. In 50 Japanese patients with severe congenital tooth agenesis, we identified 11 patients with WNT10A variants. Comparing phenotypes between the tooth agenesis patients carrying the wild-type and variants of WNT10A, we revealed that the development of lateral incisors is relatively susceptive to insufficiency of WNT/ß-catenin signaling.

17.
Neuropharmacology ; 110(Pt A): 470-479, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27544826

RESUMEN

Histone deacetylase 6 (Hdac6), a multifunctional cytoplasmic deacetylase, is abundant in brain. We previously demonstrated that global Hdac6 depletion causes aberrant emotional behaviors in mice. Identification of affected brain systems and its molecular basis will lead to new insights into relations between protein acetylation events and psychiatric disorders. Here we report the dopaminergic abnormalities in Hdac6 KO mice. The dopamine transmission mediated by D1-like and D2-like G protein-coupled dopamine receptors is known to play roles in controlling movement, cognition, and motivational processes, and its dysfunction causes psychiatric disorders. We found that Hdac6 KO mice showed significantly increased locomotor response to novel, but not to habituated environment. In addition, Hdac6 KO mice showed a long-lasting sensitivity to psychostimulants, increased locomotor response to D2-like, but not D1 dopamine receptor agonists, and rapid locomotor response to apomorphine, a direct dopamine agonist, in dopamine-depleted condition. Hdac6 protein was expressed in dopaminergic neurons and their terminals in adult mice brain, and Hdac6-depletion augmented acetylation levels of dopamine-enriched synaptosomal proteins. In Hdac6 KO mice, the striatal content of dopamine and its metabolites was normal in basal condition, but mRNA level of D2 dopamine receptor in the striatum was decreased by 30%. Taken together, our results provide evidence that Hdac6 deficiency leads to aberrant dopamine-dependent behaviors by enhancing postsynaptic dopamine D2 receptor response. This study points out the possibility that Hdac6 and reversible-acetylation events play a regulatory role in D2 dopamine receptor signaling, and thus participate in the pathology of the dopamine-related psychiatric disorders such as schizophrenia.


Asunto(s)
Dopamina/metabolismo , Histona Desacetilasa 6/deficiencia , Animales , Apomorfina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopaminérgicos/farmacología , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Histona Desacetilasa 6/genética , Masculino , Metanfetamina/farmacología , Ratones de la Cepa 129 , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , ARN Mensajero/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Esquizofrenia
18.
Mutagenesis ; 31(1): 61-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26220009

RESUMEN

Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal dysplasia characterised by hypopalstic and/or aplastic clavicles, midface hypoplasia, absent or delayed closure of cranial sutures, moderately short stature, delayed eruption of permanent dentition and supernumerary teeth. The molecular pathogenesis can be explained in about two-thirds of CCD patients by haploinsufficiency of the RUNX2 gene. In our current study, we identified a novel and rare variant of the RUNX2 gene (c.181_189dupGCGGCGGCT) in a Japanese patient with phenotypic features of CCD. The insertion led an alanine tripeptide expansion (+3Ala) in the polyalanine tract. To date, a RUNX2 variant with alanine decapeptide expansion (+10Ala) is the only example of a causative variant of RUNX2 with polyalanine tract expansion to be reported, whilst RUNX2 (+1Ala) has been isolated from the healthy population. Thus, precise analyses of the RUNX2 (+3Ala) variant were needed to clarify whether the tripeptide expanded RUNX2 is a second disease-causing mutant with alanine tract expansion. We therefore investigated the biochemical properties of the mutant RUNX2 (+3Ala), which contains 20 alanine residues in the polyalanine tract. When transfected in COS7 cells, RUNX2 (+3Ala) formed intracellular ubiquitinated aggregates after 24h, and exerted a dominant negative effect in vitro. At 24h after gene transfection, whereas slight reduction was observed in RUNX2 (+10Ala), all of these mutants significantly activated osteoblast-specific element-2, a cis-acting sequence in the promoter of the RUNX2 target gene osteocalcin. The aggregation growth of RUNX2 (+3Ala) was clearly lower and slower than that of RUNX2 (+10Ala). Furthermore, we investigated several other RUNX2 variants with various alanine tract lengths, and found that the threshold for aggregation may be RUNX2 (+3Ala). We conclude that RUNX2 (+3Ala) is the cause of CCD in our current case, and that the accumulation of intracellular aggregates in vitro is related to the length of the alanine tract.


Asunto(s)
Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Expansión de Repetición de Trinucleótido , Adulto , Pueblo Asiatico/genética , Línea Celular , Displasia Cleidocraneal/diagnóstico , Displasia Cleidocraneal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Humanos , Japón , Osteocalcina/metabolismo , Péptidos , Activación Transcripcional
19.
PLoS One ; 10(6): e0128227, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030286

RESUMEN

Congenital tooth agenesis is caused by mutations in the MSX1, PAX9, WNT10A, or AXIN2 genes. Here, we report a Japanese family with nonsyndromic tooth agenesis caused by a novel nucleotide substitution in the intronic region between exons 1 and 2 of the MSX1 gene. Because the mutation is located 9 bp before exon 2 (c.452-9G>A), we speculated that the nucleotide substitution would generate an abnormal splice site. Using cDNA analysis of an immortalized patient blood cell, we confirmed that an additional 7-nucleotide sequence was inserted at the splice junction between exons 1 and 2 (c.451_452insCCCTCAG). The consequent frameshift generated a homeodomain-truncated MSX1 (p.R151fsX20). We then studied the subcellular localization of truncated MSX1 protein in COS cells, and observed that it had a whole cell distribution more than a nuclear localization, compared to that of wild-type protein. This result suggests a deletion of the nuclear localization signal, which is mapped to the MSX1 homeodomain. These results indicate that this novel intronic nucleotide substitution is the cause of tooth agenesis in this family. To date, most MSX1 variants isolated from patients with tooth agenesis involve single amino acid substitutions in the highly conserved homeodomain or deletion mutants caused by frameshift or nonsense mutations. We here report a rare case of an intronic mutation of the MSX1 gene responsible for human tooth agenesis. In addition, the missing tooth patterns were slightly but significantly different between an affected monozygotic twin pair of this family, showing that epigenetic or environmental factors also affect the phenotypic variations of missing teeth among patients with nonsyndromic tooth agenesis caused by an MSX1 haploinsufficiency.


Asunto(s)
Anodoncia/genética , Pueblo Asiatico/genética , Intrones/genética , Factor de Transcripción MSX1/genética , Nucleótidos/genética , Sitios de Empalme de ARN/genética , Adulto , Anodoncia/diagnóstico por imagen , Secuencia de Bases , Western Blotting , Análisis Mutacional de ADN , ADN Complementario/genética , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Empalme del ARN/genética , Radiografía , Fracciones Subcelulares/metabolismo
20.
PLoS One ; 9(8): e102944, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25101640

RESUMEN

Since MSX1 and PAX9 are linked to the pathogenesis of nonsyndromic tooth agenesis, we performed detailed mutational analysis of these two genes sampled from Japanese patients. We identified two novel MSX1 variants with an amino acid substitution within the homeodomain; Thr174Ile (T174I) from a sporadic hypodontia case and Leu205Arg (L205R) from a familial oligodontia case. Both the Thr174 and Leu205 residues in the MSX1 homeodomain are highly conserved among different species. To define possible roles of mutations at these amino acids in the pathogenesis of nonsyndromic tooth agenesis, we performed several functional analyses. It has been demonstrated that MSX1 plays a pivotal role in hard tissue development as a suppressor for mesenchymal cell differentiation. To evaluate the suppression activity of the variants in mesenchymal cells, we used the myoD-promoter, which is one of convenient reporter assay system for MSX1. Although the gene products of these MSX1 variants are stable and capable of normal nuclear localization, they do not suppress myoD-promoter activity in differentiated C2C12 cells. To clarify the molecular mechanisms underlying our results, we performed further analyses including electrophoretic mobility shift assays, and co-immunoprecipitation assays to survey the molecular interactions between the mutant MSX1 proteins and the oligonucleotide DNA with MSX1 consensus binding motif or EZH2 methyltransferase. Since EZH2 is reported to interact with MSX1 and regulate MSX1 mediated gene suppression, we hypothesized that the T174I and L205R substitutions would impair this interaction. We conclude from the results of our experiments that the DNA binding ability of MSX1 is abolished by these two amino acid substitutions. This illustrates a causative role of the T174I and L205R MSX1 homeodomain mutations in tooth agenesis, and suggests that they may influence cell proliferation and differentiation resulting in lesser tooth germ formation in vivo.


Asunto(s)
Sustitución de Aminoácidos , Anodoncia/genética , Factor de Transcripción MSX1/genética , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Análisis Mutacional de ADN , Ensayo de Cambio de Movilidad Electroforética , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Regulación de la Expresión Génica , Humanos , Japón , Masculino , Datos de Secuencia Molecular , Linaje , Complejo Represivo Polycomb 2/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...