RESUMEN
Survivin is highly expressed in most human cancers, making it a promising target for cancer diagnosis and treatment. In this study, we developed peptide probes consisting of Bor65-75, a high-affinity survivin-binding peptide, and a survivin protein segment using peptide linkers as survivin-sensitive fluorescent probes (SSFPs). All conjugates were attached to 5(6)-carboxyfluorescein (FAM) at the C-terminal as a fluorophore and to 4((4(dimethylamino)phenyl)azo)benzoic acid (DABCYL) at the N-terminal as a quencher. Fluorescence (or Förster) resonance energy transfer (FRET) quenching via intramolecular binding of Bor65-75 with survivin protein segment could be diminished by the approach of survivin to SSFPs, which dissociate Bor65-75 from SSPF and increased the distance between FAM and DABCYL. A binding assay using recombinant human survivin protein (rSurvivin) demonstrated moderate to high affinity of SSFPs for survivin (dissociation constants (K d) = 121-1740 nM). Although the SSFPs (0.5 µM) had almost no fluorescence under baseline conditions, a dose-dependent increase in fluorescence intensity was observed in the presence of rSurvivin (0.1-2.0 µM). In particular, the proline-rich SSFP (SSFP5) showed the highest (2.7-fold) fluorescence induction at 2.0 µM survivin compared to the signals in the absence of survivin. Confocal fluorescence imaging demonstrated that SSFP5 exhibited clear fluorescence signals in survivin-positive MDA-MB-231 cells, whereas no marked fluorescence signals were observed in survivin-negative MCF-10A cells. Collectively, these results suggest that SSFPs can be used as survivin-specific FRET imaging probes.
RESUMEN
Survivin is overexpressed in most cancer cells but is rarely expressed in normal adult tissues. It is associated with poor prognosis and resistance to radiation therapy and chemotherapy. In this study, we designed and synthesized borealin-derived small peptides (Bor peptides) to function as survivin-targeting agents for the diagnosis and treatment of cancers. These peptides exhibited binding affinities for recombinant human survivin (Kd = 49.6-193 nM), with Bor65-75 showing the highest affinity (Kd = 49.6 nM). Fluorescence images of fluorescein isothiocyanate-labeled Bor65-75 showed its co-localization with survivin expression in the human pancreatic cancer cell line, MIA PaCa-2. In the WST-1 assay, cell penetrable nona-d-arginine-conjugated Bor65-75 (r9-Bor65-75) inhibited the growth of MIA PaCa-2 cells and MDA-MB-231 cells (89 and 88% inhibition at 10 µM, respectively), whereas it had almost no effect on the human mammary epithelial cell line, MCF-10A, that inherently does not have high survivin expression. Flow cytometry with annexin V and propidium iodide staining revealed that r9-Bor65-75 induced apoptosis in MIA PaCa-2 cells in a dose-dependent manner. An increase in cleaved poly ADP-ribose polymerase protein expression was observed in MIA PaCa-2 cells exposed to r9-Bor65-75 by western blotting, suggesting that r9-Bor65-75 inhibits cell proliferation by inducing apoptosis. In vivo, r9-Bor65-75 significantly suppressed tumor growth in MIA PaCa-2 xenograft mice, without any marked weight loss. Hence, Bor peptides are promising candidates for the development of cancer imaging and anticancer agents targeting survivin.
Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Survivin , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Proteínas de Ciclo Celular , Neoplasias Pancreáticas/patología , Péptidos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
Prion diseases are fatal neurodegenerative disorders caused by the deposition of scrapie prion protein aggregates (PrPSc) in the brain. We previously reported that styrylchromone (SC) and benzofuran (BF) derivatives have potential as imaging probes for PrPSc. To further improve their properties, we designed and synthesized 2-(benzofuran-2-yl)-chromone (BFC) derivatives hybridized with SC and BF backbones as novel single-photon emission computed tomography probes for the detection of cerebral PrPSc deposits. Recombinant mouse prion protein (rMoPrP) aggregates and mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice were used to evaluate the binding properties of BFC derivatives to PrPSc. The BFC derivatives exhibited high binding affinities (equilibrium dissociation constant [Kd] = 22.6-47.7 nM) for rMoPrP aggregates. All BFC derivatives showed remarkable selectivity against amyloid beta aggregates. Fluorescence microscopy confirmed that the fluorescence signals of the BFC derivatives corresponded to the antibody-positive deposits of PrPSc in mBSE-infected mouse brains. Among the BFC derivatives, [125I]BFC-OMe and [125I]BFC-NH2 exhibited high brain uptake and favorable washout from the mouse brain. In vitro autoradiography demonstrated that the distribution of [125I]BFC-OMe in the brain tissues of mBSE-infected mice was colocalized with PrPSc deposits. Taken together, BFC derivatives appear to be promising prion imaging probes.
Asunto(s)
Benzofuranos , Encefalopatía Espongiforme Bovina , Priones , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Bovinos , Cromonas/metabolismo , Encefalopatía Espongiforme Bovina/metabolismo , Ratones , Priones/metabolismoRESUMEN
Prion diseases are fatal neurodegenerative diseases characterized by the deposition of abnormal prion protein aggregates (PrPSc) in the brain. In this study, we developed hydroxyethylamino-substituted styrylchromone (SC) and 2-(2-(pyridin-3-yl)vinyl)-4H-chromen-4-one (VPC) derivatives for single-photon emission computed tomography (SPECT) imaging of PrPSc deposits in the brain. The binding affinity of these compounds was evaluated using recombinant mouse prion protein (rMoPrP) aggregates, which resulted in the inhibition constant (Ki) value of 61.5 and 88.0 nM for hydroxyethyl derivative, (E)-2-(4-((2-hydroxyethyl)amino)styryl)-6-iodo-4H-chromen-4-one (SC-NHEtOH) and (E)-2-(4-((2-hydroxyethyl)(methyl)amino)styryl)-6-iodo-4H-chromen-4-one (SC-NMeEtOH), respectively. However, none of the VPC derivatives showed binding affinity for the rMoPrP aggregates. Fluorescent imaging demonstrated that the accumulation pattern of SC-NHEtOH matched with the presence of PrPSc in the brain slices from mouse-adapted bovine spongiform encephalopathy-infected mice. A biodistribution study of normal mice indicated low initial brain uptake of [125I]SC-NHEtOH (0.88% injected dose/g (% ID/g) at 2 min) despite favorable washout from the brain (0.26% ID/g, at 180 min) was displayed. [125I]SC-NHEtOH exhibited binding affinities to both artificial prion aggregates as well as prion deposits in the brain. However, significant improvement in the binding affinity for PrPSc and blood-brain barrier permeability is necessary for the development of successful in vivo imaging probes for the detection of cerebral PrPSc in the brain.
Asunto(s)
Encefalopatía Espongiforme Bovina , Enfermedades por Prión , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Bovinos , Cromonas/metabolismo , Encefalopatía Espongiforme Bovina/metabolismo , Ratones , Enfermedades por Prión/diagnóstico por imagen , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Distribución TisularRESUMEN
Selenium, an essential micronutrient, plays vital roles in the brain. Selenoprotein P (SELENOP), a major plasma selenoprotein, is thought to transport selenium to the brain. However, Selenop-knockout mice fed a diet containing an adequate amount of selenium shows no objective neurological dysfunction which is observed in the selenium-deficient diet-fed Selenop-knockout mice. This fact indicated that selenium from low-mass selenium-source compounds can be transported by SELENOP-independent alternative pathways to the brain. In this study, to obtain the basic information about the SELENOP-independent transport pathways, we performed ex vivo experiments in which the rat brain cell membrane fraction was analyzed to find selenium-binding and/or -interactive proteins using its reactive metabolic intermediate, selenotrisulfide (STS), and MALDI TOF-mass spectrometry. Several membrane proteins with the cysteine (C) thiol were found to be reactive with STS through the thiol-exchange reaction. One of the C-containing proteins in the brain cell membrane fraction was identified as peptidyl-prolyl cis-trans isomerase (PPIase) A from tryptic fragmentation experiments and database search. Among the 4 C residues in rat PPIase A, 21st C was proved to react with STS by assessment using C mutated recombinant proteins. PPIase A is ubiquitously expressed and also associates with a variety of biologically important events such as immunomodulation, intracellular signaling, transcriptional regulation and protein trafficking. Consequently, PPIase A was thought to participate in the selenium transport into the rat brain.
Asunto(s)
Selenio , Animales , Encéfalo , Ciclofilina A , Ratones , Isomerasa de Peptidilprolil , Ratas , SelenoproteínasRESUMEN
SVS-1 is a cationic amphiphilic peptide (CAP) that exhibits a preferential cytotoxicity towards cancer cells over normal cells. In this study, we developed radiogallium-labeled SVS-1 (67Ga-NOTA-KV6), as well as two SVS-1 derivatives, with the repeating KV residues replaced by RV or HV (67Ga-NOTA-RV6 and 67Ga-NOTA-HV6). All three peptides showed high accumulation in epidermoid carcinoma KB cells (53-143% uptake/mg protein). Though 67Ga-NOTA-RV6 showed the highest uptake among the three CAPs, its uptake in 3T3-L1 fibroblasts was just as high, indicating a low selectivity. In contrast, the uptake of 67Ga-NOTA-KV6 and 67Ga-NOTA-HV6 into 3T3-L1 cells was significantly lower than that in KB cells. An endocytosis inhibition study suggested that the three 67Ga-NOTA-CAPs follow distinct pathways for internalization. In the biodistribution study, the tumor uptakes were found to be 4.46%, 4.76%, and 3.18% injected dose/g of tissue (% ID/g) for 67Ga-NOTA-KV6, 67Ga-NOTA-RV6, and 67Ga-NOTA-HV6, respectively, 30 min after administration. Though the radioactivity of these peptides in tumor tissue decreased gradually, 67Ga-NOTA-KV6, 67Ga-NOTA-RV6, and 67Ga-NOTA-HV6 reached high tumor/blood ratios (7.7, 8.0, and 3.8, respectively) and tumor/muscle ratios (5.0, 3.3, and 4.0, respectively) 120 min after administration. 67Ga-NOTA-HV6 showed a lower tumor uptake than the two other tracers, but it exhibited very low levels of uptake into peripheral organs. Overall, the replacement of lysine in SVS-1 with other basic amino acids significantly influenced its binding and internalization into cancer cells, as well as its in vivo pharmacokinetic profile. The high accessibility of these peptides to tumors and their ability to target the surface membranes of cancer cells make radiolabeled CAPs excellent candidates for use in tumor theranostics.
RESUMEN
INTRODUCTION: Prion diseases are fatal neurodegenerative disorders caused by the deposition of abnormal prion protein aggregates (PrPSc) in the central nervous system. This study aimed to evaluate the use of iodinated pyridyl benzofuran (IPBF) derivatives as single-photon emission computed tomography (SPECT) probes for the detection of cerebral PrPSc deposits. METHODS: In vitro binding assays of IPBF derivatives were carried out in the recombinant mouse prion protein (rMoPrP) and brain sections of mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice. SPECT imaging of 5-(5-[123I]iodobenzofuran-2-yl)-N-methylpyridin-2-amine ([123I]IPBF-NHMe) was performed on mBSE-infected and mock-infected mice. RESULTS: Fluorescence microscopy results showed that fluorescence signals of IPBF derivatives corresponded to the thioflavin-T positive amyloid deposits of PrPSc in the brain sections of mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice. Among the IPBF derivatives, 5-(5-iodobenzofuran-2-yl)-N-methylpyridin-2-amine (IPBF-NHMe) exhibited the highest binding affinity to the recombinant mouse prion protein (rMoPrP) aggregates with a Ki of 14.3 nM. SPECT/computed tomography (CT) imaging and ex vivo autoradiography demonstrated that the [123I]IPBF-NHMe distribution in brain tissues of mBSE-infected mice co-localized with PrPSc deposits. CONCLUSION: [123I]IPBF-NHMe appears to be a prospective SPECT tracer for monitoring prion deposits in living brain tissues.
Asunto(s)
Benzofuranos/química , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteínas Priónicas/metabolismo , Piridinas/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Estudios de Factibilidad , Ratones , Microscopía FluorescenteRESUMEN
Survivin belongs to the inhibitor of apoptosis protein family, which is consistently overexpressed in most cancer cells but rarely expressed in normal adult tissues. Therefore, the detection and inhibition of survivin are regarded as attractive strategies for cancer-specific treatment. In this study, we designed and synthesized 7-19 residues of inner centromere protein (INCENP)-derived small peptides (INC peptides) as novel survivin-targeting agents. The INC peptides showed binding affinity for the human survivin protein (Kd = 91.4-255 nmol L-1 ); INC16-22 , which contains residues 16-22 of INCENP, showed the highest affinity (91.4 nmol L-1 ). Confocal fluorescence imaging showed consistent colocalization of FITC-INC16-22 and survivin in cell lines. Nona-arginine-linked INC16-22 (r9-INC16-22 ) rendered INC16-22 cells penetrable and strongly inhibited cell growth of MIA PaCa-2 cells (52% inhibition at 1.0 µmol L-1 ) and MDA-MB-231 cells (60% inhibition at 10 µmol L-1 ) as determined by MTT assays. The exposure of MIA PaCa-2 cells to 40 µmol L-1 r9-INC16-22 apparently reduced the intracellular protein expression levels of survivin. However, cleaved caspase-3 was significantly increased in cells treated with r9-INC16-22 , even at 10 µmol L-1 , compared to untreated cells. Flow cytometry revealed that r9-INC16-22 strongly induced apoptosis in MIA PaCa-2 cells. These results indicate that the cytotoxic effects of r9-INC16-22 could be mediated mainly through the disruption of survivin-dependent antiapoptotic functions and partly because of the direct degradation of the survivin protein. Our findings suggest that INC peptides can act as useful scaffolds for novel cancer imaging and anticancer agents.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Proteínas Cromosómicas no Histona/genética , Péptidos/farmacología , Survivin/aislamiento & purificación , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Caspasas/química , Caspasas/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas Cromosómicas no Histona/química , Femenino , Humanos , Proteínas Inhibidoras de la Apoptosis/química , Proteínas Inhibidoras de la Apoptosis/aislamiento & purificación , Imagen Molecular/métodos , Péptidos/síntesis química , Péptidos/química , Survivin/química , Survivin/genéticaRESUMEN
Legumain or asparaginyl endopeptidase is an enzyme overexpressed in some cancers and involved in cancer migration, invasion, and metastasis. We have developed radioiodine- ([125I]I-LCP) or fluorescein-labeled peptides (FL-LCP) with a cell-permeable d-Arg nonamer fused to an anionic d-Glu nonamer via a legumain-cleavable linker, to function as peptide probes that measure and monitor legumain activity. Non-cleavable probes of FL-NCP and [125I]I-NCP were similarly prepared and evaluated as negative control probes by altering their non-cleavable sequence. Model peptides with the legumain-cleavable or non-cleavable sequence (LCP and NCP, respectively) reacted with recombinant human legumain, and only LCP was digested by this enzyme. [125I]I-LCP uptake in legumain-positive HCT116 cells was significantly higher than that of [125I]I-NCP (11.2⯱â¯0.44% vs 1.75⯱â¯0.06% dose/mg). The accumulation of FL-LCP in the HCT116 cells was rather low (4.75⯱â¯0.29% dose/mg protein), but not significantly different from the levels of FL-NCP. It is possible that low concentrations of [125I]I-LCP (40â¯pM) can be effectively internalized after legumain cleavage. On the other hand, the cellular uptake of much higher concentrations of the FL-LCP derivative (1â¯mM) may be restricted by high concentrations of polyanions. The in vivo biodistribution studies in tumor-bearing mice demonstrated that the tumor uptake of [125I]I-LCP was 1.34% injected dose per gram (% ID/g) at 30â¯min. The tumor/blood and tumor/muscle ratios at 30â¯min were 0.63 and 1.77, respectively, indicating that the [125I]I-LCP accumulation in tumors was inadequate for in vivo imaging. Although further structural modifications are necessary to improve pharmacokinetic properties, [125I]I-LCP has been demonstrated to be an effective scaffold for the development of nuclear medicine imaging probes to monitor legumain activity in living subjects.
Asunto(s)
Péptidos de Penetración Celular/metabolismo , Neoplasias del Colon/metabolismo , Cisteína Endopeptidasas/metabolismo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Radioisótopos de Yodo/metabolismo , Imagen Molecular/métodos , Animales , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Tomografía Computarizada de Emisión de Fotón Único/métodos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Prion diseases are fatal neurodegenerative disorders associated with the deposition of abnormal prion protein aggregates (PrPSc) in the brain tissue. Here, we report the development of 125I-labeled iodobenzofuran (IBF) derivatives as single photon emission computed tomography (SPECT) imaging probes to detect cerebral PrPSc deposits. We synthesized and radioiodinated several 5-IBF and 6-IBF derivatives. The IBF derivatives were evaluated as prion imaging probes using recombinant mouse prion protein (rMoPrP) aggregates and brain sections of mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice. Although all the IBF derivatives were strongly adsorbed on the rMoPrP aggregates, [125I]5-IBF-NHMe displayed the highest adsorption rate and potent binding affinity with an equilibrium dissociation constant (Kd) of 12.3 nM. Fluorescence imaging using IBF-NHMe showed clear signals of the PrPSc-positive amyloid deposits in the mBSE-infected mouse brains. Biodistribution studies in normal mice demonstrated slow uptake and clearance from the brain of 125I-IBF derivatives. Among the derivatives, [125I]6-IBF-NH2 showed the highest peak brain uptake [2.59% injected dose (ID)/g at 10 min] and good clearance (0.51% ID/g at 180 min). Although the brain distribution of IBF derivatives should still be optimized for in vivo imaging, these compounds showed prospective binding properties to PrPSc. Further chemical modification of these IBF derivatives may contribute to the discovery of clinically applicable prion imaging probes.
Asunto(s)
Benzofuranos/síntesis química , Encéfalo/metabolismo , Radioisótopos de Yodo/química , Proteínas PrPC/metabolismo , Enfermedades por Prión/diagnóstico por imagen , Animales , Benzofuranos/administración & dosificación , Benzofuranos/química , Benzofuranos/farmacocinética , Encéfalo/diagnóstico por imagen , Bovinos , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Estructura Molecular , Enfermedades por Prión/metabolismo , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón ÚnicoRESUMEN
GluN2B-containing NMDA receptors (NMDARs) play fundamental roles in learning and memory, although they are also associated with various brain disorders. In this study, we synthesized and evaluated three 11 C-labeled N-benzyl amidine derivatives 2-[11 C]methoxybenzyl) cinnamamidine ([11 C]CBA), N-(2-[11 C]methoxybenzyl)-2-naphthamidine ([11 C]NBA), and N-(2-[11 C]methoxybenzyl)quinoline-3-carboxamidine ([11 C]QBA) as PET radioligands for these receptors. The 11 C-benzyl amidines were synthesized via conventional methylation of corresponding des-methyl precursors with [11 C]CH3 I. In vitro binding characteristics were examined in brain sagittal sections using various GluN2B modulators and off-target ligands. Further, in vivo brain distribution studies were performed in normal mice. The 11 C-labeled benzyl amidines showed high-specific binding to the GluN2B subunit at in vitro. In particular, the quinoline derivative [11 C]QBA had the best binding properties in terms of high-brain localization to GluN2B-rich regions and specificity to the GluN2B subunit. Conversely, these 11 C-radioligands showed the brain distributions were inconsistent with GluN2B expression in biodistribution experiments. The majority of the radiolabeled compounds were identified as metabolized forms of which amido derivatives seemed to be the major species. Although these 11 C-ligands had high-specific binding to the GluN2B subunit, significant improvement in metabolic stability is necessary for successful positron emission tomography (PET) imaging of the GluN2B subunit of NMDARs.
Asunto(s)
Amidinas/síntesis química , Amidinas/metabolismo , Radioisótopos de Carbono , Tomografía de Emisión de Positrones/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Amidinas/química , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Técnicas de Química Sintética , Marcaje Isotópico , Ligandos , Ratones , RadioquímicaRESUMEN
Niboshi is a commonly used foodstuff that is processed from Japanese anchovy (Engraulis japonicus) in Japanese cuisine. It was previously demonstrated that Niboshi and its water extract contained highly bioavailable selenium for selenium deficient mice. In this study, we assessed the selenium bioavailability from the extract of the Niboshi, using cultured cells. The activity of selenium-dependent glutathione peroxidase (GPx) of rat dorsal ganglion cells and human cervical carcinoma cells incubated with selenium from the Niboshi extract was over 2 times of that of the extract-free control cells and comparable to that of cells incubated with selenious acid of the same selenium concentration. These results suggest that selenium from the Niboshi extract was utilized for synthesis of the selenoprotein. Such in vitro selenium bioavailability was consistent with our previous results of in vivo assessment in mice.
Asunto(s)
Peces/metabolismo , Glutatión Peroxidasa/metabolismo , Alimentos Marinos/análisis , Selenio/farmacocinética , Selenoproteínas/biosíntesis , Animales , Disponibilidad Biológica , Células Cultivadas , Humanos , Ratas , Ácido SeleniosoRESUMEN
Survivin, overexpressed in most cancers, is associated with poor prognosis and resistance to radiation therapy and chemotherapy. Herein, we report the synthesis of three 3-phenethyl-2-indolinone derivatives and their application as in vivo imaging agents for survivin. Of these, 3-(2-(benzo[d][1,3]dioxol-5-yl)-2-oxoethyl)-3-hydroxy-5- iodoindolin-2-one (IPI-1) showed the highest binding affinity (Kdâ¯=â¯68.3â¯nM) to recombinant human survivin, as determined by quartz crystal microbalance (QCM). In vitro studies demonstrated that the [125I]IPI-1 binding in survivin-positive MDA-MB-231 cells was significantly higher than that in survivin-negative MCF-10A cells. In addition, uptake of [125I]IPI-1 by MDA-MB-231 cells decreased in a dose-dependent manner in the presence of the high-affinity survivin ligand S12; this is indicative of specific binding of [125I]IPI-1 to cellular survivin protein in vitro. Biodistribution studies in MDA-MB-231 tumor-bearing mice demonstrated the moderate uptake of [125I]IPI-1 in the tumor tissue (1.37%â¯ID/g) at 30â¯min that decreased to 0.32%â¯ID/g at 180â¯min. Co-injection of S12 (2.5â¯mg/kg) slightly reduced tumor uptake and the tumor/muscle ratio of [125I]IPI-1. Although further structural modifications are necessary to improve pharmacokinetic properties, our results indicate that PI derivatives may be useful as tumor-imaging probes targeting survivin.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Indoles/química , Proteínas Inhibidoras de la Apoptosis/metabolismo , Radiofármacos/síntesis química , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Indoles/metabolismo , Proteínas Inhibidoras de la Apoptosis/química , Proteínas Inhibidoras de la Apoptosis/genética , Radioisótopos de Yodo/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxindoles , Unión Proteica , Tecnicas de Microbalanza del Cristal de Cuarzo , Radiofármacos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Trasplante HeterólogoRESUMEN
As an essential micronutrient, selenium deficiency is a leading cause of cardiovascular diseases. The heart is continuously beating to deliver blood to the entire body, and this requires a high amount of energy. An adult heart normally obtains 50-70% of its adenosine 5'-triphosphate from fatty acid ß-oxidation. An increase in fatty acid oxidation activity induces the generation of larger amounts of by-products (reactive oxygen species, ROS) from mitochondrial oxidative phosphorylation. Selenium-dependent glutathione peroxidases play a critical role in the removal of these ROS, especially organic hydroperoxides, from the heart. The definitive transport and/or detailed metabolic pathways from the selenium-source compounds to the selenoproteins in the heart still remain unclear. We explored the selenium-binding proteins in a rat cardiac cell lysate using its reactive metabolic intermediate, selenotrisulfide (STS), and MALDI TOF-mass spectrometry. Several proteins with a free cysteine (Cys) thiol were found to be reactive with STS through a thiol-exchange reaction. The most distinctive Cys-containing protein in the cardiac cell lysate was identified as myoglobin (Mb) from a rat protein database search and tryptic fragmentation experiments. When separately examined in selenium adequate rats, selenium-binding to the cardiac Mb was verified using selenium-specific fluorometry. Cardiac Mb is thought to participate in the selenium metabolic pathway in the heart.
Asunto(s)
Miocardio/metabolismo , Mioglobina/metabolismo , Proteínas de Unión al Selenio/metabolismo , Selenio/metabolismo , Secuencia de Aminoácidos , Animales , Masculino , Ratas , Ratas WistarRESUMEN
In this study, we developed selenoprotein L-inspired nano-vesicular peroxidase mimics based on amphiphilic diselenides. Selenocystine (SeCyst) was used as the starting material for the synthesis of four liposomal membrane-compatible diselenide derivatives (R-Se-Se-R') with two hydrophobic tails and a polar part. The diselenide derivatives were successfully incorporated into the phosphatidylcholine (PC)-based nano-vesicular scaffold. The results of the particle diameter and zeta-potential measurements suggested that the functional diselenide moiety was placed around the outer surface, not in the hydrophobic interior, of the liposomal membrane structures. The GPx-like catalytic activity of the diselenide/PC liposomes was determined by the conventional NADPH method using glutathione as the reducing substrate. For three peroxide substrates, i.e., hydrogen peroxide, organic tert-butyl hydroperoxide and cummen hydroperoxide, the cationic property-possessing diselenide derivatives in the PC-based liposomes resulted in a higher catalytic activity in comparison to electrically neutral and anionic derivatives. Overall, the diselenide derivatives at the surface of a liposomal colloidal scaffold could exert a GPx-like catalytic activity in physiological aqueous media.
Asunto(s)
Materiales Biomiméticos/química , Cistina/análogos & derivados , Glutatión Peroxidasa/química , Liposomas/química , Compuestos de Organoselenio/química , Selenoproteínas/química , Compuestos de Bencilo/química , Biocatálisis , Materiales Biomiméticos/síntesis química , Cistina/química , Peróxido de Hidrógeno/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Liposomas/síntesis química , NADP/química , Compuestos de Organoselenio/síntesis química , Tamaño de la Partícula , Fosfatidilcolinas/química , Soluciones , Tensoactivos/síntesis química , Tensoactivos/química , Agua/química , terc-Butilhidroperóxido/químicaRESUMEN
Selenium is an essential trace element for humans and animals. Fish and shellfish are known to be rich in selenium and suppose to be an effective selenium source. In this study, we characterized the selenium species in the Shijimi clam (Corbicula japonica), which is a typical clam eaten in Japan. The Shijimi clam contains a relatively high concentration of selenium (3.5 µg-selenium/g-dry Shijimi). Approximately 30% of the total selenium in the Shijimi clam meat was extractable with water, while selenium in the Shijimi clam was hardly extracted with ethanol, chloroform and hexane. Based on an ultrafiltration study, the molecular mass of the major selenium species in the Shijimi water-extract was estimated to be less than 5000. Because amphoteric selenium species were contained in the Shijimi water-extract, which was indicated by ion-exchange chromatographic separation, an ion-pair reagent was utilized to extract the ionic selenium species into an organic solvent. A matrix assisted laser desorption ionization (MALDI) time of flight (TOF)-mass spectrometric analysis revealed the selenium isotopic pattern involving one selenium atom in a molecule with the 80Se molecular ion peak at m/z 534. This selenium species was mainly found in the visceral part of the Shijimi clam by imaging mass spectrometry.
Asunto(s)
Compuestos de Selenio/análisis , Animales , Cromatografía por Intercambio Iónico , Corbicula , Japón , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Prion diseases are caused by deposition of abnormal prion protein aggregates (PrPSc) in the central nervous system. This study aimed to develop in vivo imaging probes that can detect cerebral PrPSc deposits. We synthesized several quinacrine-based acridine (AC) derivatives with 2,9-substitution and radioiodinated them. The AC derivatives were evaluated as prion-imaging probes using recombinant mouse prion protein (rMoPrP) aggregates and brain sections of mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice. The distribution of these compounds in mice was also evaluated. The 2-methoxy derivative [125I]2 exhibited the highest binding affinity for rMoPrP aggregates with an equilibrium dissociation constant (Kd) value of 43.4nM. Fluorescence imaging with 2 showed clear signals at the thioflavin T (ThT)-positive amyloid deposits in the mBSE-infected mouse brain. Although a discrepancy was observed between the in vitro binding of AC derivatives to the aggregates and in vivo distribution of these compounds in the brain and we failed to identify prospective prion-imaging probes in this study, the AC derivatives may be considered a useful scaffold for the development of in vivo imaging probes. Further chemical modification of these AC derivatives may discover clinically applicable prion imaging probes.
Asunto(s)
Acridinas/química , Encéfalo/diagnóstico por imagen , Radioisótopos de Yodo/química , Imagen Molecular , Enfermedades por Prión/diagnóstico por imagen , Acridinas/administración & dosificación , Acridinas/síntesis química , Administración Intravenosa , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Radioisótopos de Yodo/administración & dosificación , Ratones , Estructura Molecular , Relación Estructura-Actividad , Distribución TisularRESUMEN
Gallium-68 (68Ga) is a positron emitter for clinical positron emission tomography (PET) applications that can be produced by a 68Ge/68Ga generator without cyclotron. However, commercially available 68Ge/68Ga generator systems require multiple steps for the preparation of 68Ga radiopharmaceuticals and are sometimes plagued by metallic impurities in the 68Ga eluent. We developed a 68Ge/68Ga generator system using polysaccharide-based adsorbents and direct application of the generator-eluted 68Ga-citrate to PET imaging of tropical infectious diseases. N-Methylglucamine (MG) as a 68Ge-adsorbing unit (Sepha-MGs) was introduced to a series of Sephadex G-10, G-15, G-25, G-50, and G-75. In the batch method, over 97% of the 68Ge in the solution was adsorbed onto the Sepha-MG series within 15 min. In particular, 68Ge was effectively adsorbed on the Sepha(15)-MG packed columns and 70-80% of the 68Ga was eluted by 1 mL of 0.1 M trisodium citrate with low 68Ge contamination (<0.001%). The chemical form of the generator-eluted 68Ga solution was identified as 68Ga-citrate. In PET studies, affected regions in mice infected with Leishmania and severe fever with thrombocytopenia syndrome virus were clearly visualized using the 68Ga-citrate. Sepha-MGs are useful adsorbents for 68Ge/68Ga generator systems with high 68Ga elution efficiency and minimal 68Ge breakthrough. These results indicated that eluted 68Ga-citrate can be directly used for PET imaging of infectious sites in mice. This novel generator system may be useful for straightforward PET imaging of infection in clinical practice.
RESUMEN
Sup35 is a prion-like protein from yeast and shares the ability to transmit its aberrant fold and to aggregate into amyloid fibrils. 7GNNQQNY13 from the prion-determining domain of Sup35 was reported to form an amyloid. We first investigated the self-aggregation transition behavior of GNNQQNY to the ß-sheet amyloid state under various conditions. Mechanical stirring using a magnetic bar resulted in accelerated aggregation of the GNNQQNY. The aggregation rate of GNNQQNY was also dependent on its concentration; the higher the GNNQQNY concentration, the faster the aggregation. Circular dichroism and Fourier transform-infrared spectral data indicated the formation of the ß-sheet structure in the GNNQQNY aggregates. The fluorescence experiments using an amyloid-specific thioflavin T also demonstrated that the GNNQQNY aggregates formed the amyloid structures. The amyloid structure of the GNNQQNY aggregates served as seeds for the elongation of the monomeric GNNQQNY in the solution state. We further studied the ability of the GNNQQNY amyloid fibrils to act as seeds for the elongation of the amyloid-forming monomeric proteins (albumin, lysozyme and insulin). The cross-seeding experiments suggested that the GNNQQNY aggregate could possibly promote the amyloid fibril formation of heterogeneous insulin. The inverse monomeric GNNQQNY would have a binding capacity for the heterogeneous already-formed amyloid-ß fibrils on a mice brain section. These basic data could be informative for elucidating the pathogenic and/or propagation mechanisms of prion agents and developing effective therapeutics and/or diagnosis for prion diseases.
Asunto(s)
Péptidos beta-Amiloides/química , Factores de Terminación de Péptidos/química , Proteínas Priónicas/química , Agregado de Proteínas , Agregación Patológica de Proteínas/inducido químicamente , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Benzotiazoles , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Insulina/química , Ratones , Ratones Transgénicos , Muramidasa/química , Factores de Terminación de Péptidos/administración & dosificación , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Conformación Proteica en Lámina beta , Pliegue de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/administración & dosificación , Albúmina Sérica/química , Espectrometría de Fluorescencia , TiazolesRESUMEN
Long-term peritoneal dialysis (PD) frequently produces morphological and functional changes of the peritoneum, making continuation of PD difficult. Therefore, it is necessary to evaluate peritoneal injury at an early stage and develop appropriate therapies. The aims of the present study were to evaluate peritoneal injury at an early stage and assess a drug for prevention of peritoneal injury using our previously developed novel evaluation method. Peritoneal injury was induced in model animals by intraperitoneal injection of methylglyoxal (MGO) for 1 to 5 consecutive days or chlorhexidine digluconate (CG) for 1 to 14 consecutive days. Tetramethylrhodamine-dextran (RD)-10 and fluorescein isothiocyanate-dextran (FD)-2000 were then injected into the peritoneal cavity and recovered after 120 min to evaluate peritoneal injury. The ratio of the concentration of RD-10 to FD-2000 (RD-10/FD-2000 ratio) significantly decreased in animals that had been treated with MGO or CG for 1 d. Moreover, the RD-10/FD-2000 ratio significantly increased in CG- and thalidomide-treated animals. The RD-10/FD-2000 ratio can be used to evaluate peritoneal injury at an early stage and assess the drug efficacy of thalidomide for prevention of peritoneal injury. This study will contribute to the development of therapeutic treatments for peritoneal injury.