Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Open Biol ; 9(10): 190125, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31615333

RESUMEN

Condensin is an essential component of chromosome dynamics, including mitotic chromosome condensation and segregation, DNA repair, and development. Genome-wide localization of condensin is known to correlate with transcriptional activity. The functional relationship between condensin accumulation and transcription sites remains unclear, however. By constructing the auxin-inducible degron strain of condensin, herein we demonstrate that condensin does not affect transcription itself. Instead, RNA processing at transcriptional termination appears to define condensin accumulation sites during mitosis, in the fission yeast Schizosaccharomyces pombe. Combining the auxin-degron strain with the nda3 ß-tubulin cold-sensitive (cs) mutant enabled us to inactivate condensin in mitotically arrested cells, without releasing the cells into anaphase. Transcriptional activation and termination were not affected by condensin's degron-mediated depletion, at heat-shock inducible genes or mitotically activated genes. On the other hand, condensin accumulation sites shifted approximately 500 bp downstream in the auxin-degron of 5'-3' exoribonuclease Dhp1, in which transcripts became aberrantly elongated, suggesting that condensin accumulates at transcriptionally terminated DNA regions. Growth defects in mutant strains of 3'-processing ribonuclease and polyA cleavage factors were additive in condensin temperature-sensitive (ts) mutants. Considering condensin's in vitro activity to form double-stranded DNAs from unwound, single-stranded DNAs or DNA-RNA hybrids, condensin-mediated processing of mitotic transcripts at the 3'-end may be a prerequisite for faithful chromosome segregation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis , Complejos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Terminación de la Transcripción Genética , Adenosina Trifosfatasas/genética , Segregación Cromosómica , Proteínas de Unión al ADN/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Tubulina (Proteína)/metabolismo
2.
G3 (Bethesda) ; 9(8): 2667-2676, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31201205

RESUMEN

Genetically controlled mechanisms of cell division and quiescence are vital for responding to changes in the nutritional environment and for cell survival. Previously, we have characterized temperature-sensitive (ts) mutants of the cwh43 gene in fission yeast, Schizosaccharomyces pombe, which is required for both cell proliferation and nitrogen starvation-induced G0 quiescence. Cwh43 encodes an evolutionarily conserved transmembrane protein that localizes in endoplasmic reticulum (ER). Defects in this protein fail to divide in low glucose and lose mitotic competence under nitrogen starvation, and also affect lipid metabolism. Here, we identified mutations of the pmr1 gene, which encodes an evolutionarily conserved Ca2+/Mn2+-transporting P-type ATPase, as potent extragenic suppressors of ts mutants of the cwh43 gene. Intriguingly, these pmr1 mutations specifically suppressed the ts phenotype of cwh43 mutants, among five P-type Ca2+- and/or Mn2+-ATPases reported in this organism. Cwh43 and Pmr1 co-localized in the ER. In cwh43 mutant cells, addition of excessive manganese to culture media enhanced the severe defect in cell morphology, and caused abnormal accumulation of a cell wall component, 1, 3-ß-glucan. In contrast, these abnormal phenotypes were abolished by deletion of the pmr1+ gene, as well as by removal of Mn2+ from the culture medium. Furthermore, nutrition-related phenotypes of cwh43 mutant cells were rescued in the absence of Pmr1. Our findings indicate that the cellular processes regulated by Cwh43 are appropriately balanced with Pmr1-mediated Mn2+ transport into the ER.


Asunto(s)
Ceramidas/química , Compuestos de Manganeso/química , Proteínas de la Membrana/química , ATPasas Tipo P/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimología , Modelos Biológicos , Mutación , Fenotipo , Schizosaccharomyces/genética
3.
G3 (Bethesda) ; 9(6): 1815-1823, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30967422

RESUMEN

The mitotic kinetochore forms at the centromere for proper chromosome segregation. Deposition of the centromere-specific histone H3 variant, spCENP-A/Cnp1, is vital for the formation of centromere-specific chromatin and the Mis17-Mis6 complex of the fission yeast Schizosaccharomyces pombe is required for this deposition. Here we identified extragenic suppressors for a Mis17-Mis6 complex temperature-sensitive (ts) mutant, mis17-S353P, using whole-genome sequencing. The large and small daughter nuclei phenotype observed in mis17-S353P was greatly rescued by these suppressors. Suppressor mutations in two ribonuclease genes involved in the mRNA decay pathway, exo2 and pan2, may affect Mis17 protein level, as mis17 mutant protein level was recovered in mis17-S353P exo2 double mutant cells. Suppressor mutations in EKC/KEOPS complex genes may not regulate Mis17 protein level, but restored centromeric localization of spCENP-A/Cnp1, Mis6 and Mis15 in mis17-S353P Therefore, the EKC/KEOPS complex may inhibit Mis17-Mis6 complex formation or centromeric localization. Mutational analysis in protein structure indicated that suppressor mutations in the EKC/KEOPS complex may interfere with its kinase activity or complex formation. Our results suggest that the mRNA decay pathway and the EKC/KEOPS complex negatively regulate Mis17-Mis6 complex-mediated centromere formation by distinct and unexpected mechanisms.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/genética , Centrómero/metabolismo , Estabilidad del ARN , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Complejos Multiproteicos/metabolismo , Mutación , Fenotipo
4.
J Biol Chem ; 294(10): 3772-3782, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30635402

RESUMEN

DNA topoisomerase II (topo II) regulates the topological state of DNA and is necessary for DNA replication, transcription, and chromosome segregation. Topo II has essential functions in cell proliferation and therefore is a critical target of anticancer drugs. In this study, using Phos-tag SDS-PAGE analysis in fission yeast (Schizosaccharomyces pombe), we identified casein kinase II (Cka1/CKII)-dependent phosphorylation at the C-terminal residues Ser1363 and Ser1364 in topo II. We found that this phosphorylation decreases the inhibitory effect of an anticancer catalytic inhibitor of topo II, ICRF-193, on mitosis. Consistent with the constitutive activity of Cka1/CKII, Ser1363 and Ser1364 phosphorylation of topo II was stably maintained throughout the cell cycle. We demonstrate that ICRF-193-induced chromosomal mis-segregation is further exacerbated in two temperature-sensitive mutants, cka1-372 and cka1/orb5-19, of the catalytic subunit of CKII or in the topo II nonphosphorylatable alanine double mutant top2-S1363A,S1364A but not in cells of the phosphomimetic glutamate double mutant top2-S1363E,S1364E Our results suggest that Ser1363 and Ser1364 in topo II are targeted by Cka1/CKII kinase and that their phosphorylation facilitates topo II ATPase activity in the N-terminal region, which regulates protein turnover on chromosome DNA. Because CKII-mediated phosphorylation of the topo II C-terminal domain appears to be evolutionarily conserved, including in humans, we propose that attenuation of CKII-controlled topo II phosphorylation along with catalytic topo II inhibition may promote anticancer effects.


Asunto(s)
Biocatálisis/efectos de los fármacos , Quinasa de la Caseína II/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Piperazinas/farmacología , Schizosaccharomyces/enzimología , Inhibidores de Topoisomerasa II/farmacología , Segregación Cromosómica/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/genética , Dicetopiperazinas , Mitosis/efectos de los fármacos , Mitosis/genética , Mutación , Fosforilación/efectos de los fármacos , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
5.
J Cell Sci ; 131(16)2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30072439

RESUMEN

Cellular nutrient states control whether cells proliferate, or whether they enter or exit quiescence. Here, we report characterizations of fission yeast temperature-sensitive (ts) mutants of the evolutionarily conserved transmembrane protein Cwh43, and explore its relevance to utilization of glucose, nitrogen source and lipids. GFP-tagged Cwh43 localizes at ER associated with the nuclear envelope and the plasma membrane, as in budding yeast. We found that cwh43 mutants failed to divide in low glucose and lost viability during quiescence under nitrogen starvation. In cwh43 mutants, comprehensive metabolome analysis demonstrated dramatic changes in marker metabolites that altered under low glucose and/or nitrogen starvation, although cwh43 cells apparently consumed glucose in the culture medium. Furthermore, we found that cwh43 mutant cells had elevated levels of triacylglycerols (TGs) and coenzyme A, and that they accumulated lipid droplets. Notably, TG biosynthesis was required to maintain cell division in the cwh43 mutant. Thus, Cwh43 affects utilization of glucose and nitrogen sources, as well as storage lipid metabolism. These results may fit a notion developed in budding yeast stating that Cwh43 conjugates ceramide to glycosylphosphatidylinositol (GPI)-anchored proteins and maintains integrity of membrane organization.


Asunto(s)
Ceramidas/metabolismo , Metabolismo Energético/genética , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/fisiología , Fase de Descanso del Ciclo Celular/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , Proteínas Ligadas a GPI/metabolismo , Glucosa/metabolismo , Homeostasis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nitrógeno/metabolismo , Nutrientes , Organismos Modificados Genéticamente , Schizosaccharomyces/genética , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
G3 (Bethesda) ; 8(8): 2723-2733, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29925533

RESUMEN

The centromere is a chromosomal locus where a microtubule attachment site, termed kinetochore, is assembled in mitosis. In most eukaryotes, with the exception of holocentric species, each chromosome contains a single distinct centromere. A chromosome with an additional centromere undergoes successive rounds of anaphase bridge formation and breakage, or triggers a cell cycle arrest imposed by DNA damage and replication checkpoints. We report here a study in Schizosaccharomyces pombe to characterize a mutant (cnp3-1) in a gene encoding a homolog of mammalian centromere-specific protein, CENP-C. At the restrictive temperature 36°, the Cnp3-1 mutant protein loses its localization at the centromere. In the cnp3-1 mutant, the level of the Cnp1 (a homolog of a centromere-specific histone CENP-A) also decreases at the centromere. Interestingly, the cnp3-1 mutant is prone to promiscuous accumulation of Cnp1 at non-centromeric regions, when Cnp1 is present in excess. Unlike the wild type protein, Cnp3-1 mutant protein is found at the sites of promiscuous accumulation of Cnp1, suggesting that Cnp3-1 may stabilize or promote accumulation of Cnp1 at non-centromeric regions. From these results, we infer the role of Cnp3 in restricting the site of accumulation of Cnp1 and thus to prevent formation of de novo centromeres.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Schizosaccharomyces/genética , Centrómero/genética , Proteínas Cromosómicas no Histona/metabolismo , Mutación , Transporte de Proteínas , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(21): E4833-E4842, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735656

RESUMEN

Cohesin is a fundamental protein complex that holds sister chromatids together. Separase protease cleaves a cohesin subunit Rad21/SCC1, causing the release of cohesin from DNA to allow chromosome segregation. To understand the functional organization of cohesin, we employed next-generation whole-genome sequencing and identified numerous extragenic suppressors that overcome either inactive separase/Cut1 or defective cohesin in the fission yeast Schizosaccharomyces pombe Unexpectedly, Cut1 is dispensable if suppressor mutations cause disorders of interfaces among essential cohesin subunits Psm1/SMC1, Psm3/SMC3, Rad21/SCC1, and Mis4/SCC2, the crystal structures of which suggest physical and functional impairment at the interfaces of Psm1/3 hinge, Psm1 head-Rad21, or Psm3 coiled coil-Rad21. Molecular-dynamics analysis indicates that the intermolecular ß-sheets in the cohesin hinge of cut1 suppressor mutants remain intact, but a large mobility change occurs at the coiled coil bound to the hinge. In contrast, suppressors of rad21-K1 occur in either the head ATPase domains or the Psm3 coiled coil that interacts with Rad21. Suppressors of mis4-G1326E reside in the head of Psm3/1 or the intragenic domain of Mis4. These may restore the binding of cohesin to DNA. Evidence is provided that the head and hinge of SMC subunits are proximal, and that they coordinate to form arched coils that can hold or release DNA by altering the angles made by the arched coiled coils. By combining molecular modeling with suppressor sequence analysis, we propose a cohesin structure designated the "hold-and-release" model, which may be considered as an alternative to the prevailing "ring" model.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Cromátides/fisiología , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , ADN de Hongos/genética , Modelos Moleculares , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosforilación , Conformación Proteica , Subunidades de Proteína , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Supresión Genética , Cohesinas
8.
Genes Cells ; 21(9): 978-93, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27458047

RESUMEN

ICRF-193 [meso-4,4-(2,3-butanediyl)-bis(2,6-piperazinedione)] is a complex-stabilizing inhibitor of DNA topoisomerase II (topo II) that is used as an effective anticancer drug. ICRF-193 inhibits topo II catalytic activity in vitro and blocks nuclear division in vivo. Here, we examined the effects of ICRF-193 treatment on chromatin behavior and spindle dynamics using detailed live mitotic cell analysis in the fission yeast, Schizosaccharomyces pombe. Time-lapse movie analysis showed that ICRF-193 treatment leads to an elongation of presumed chromatin fibers connected to kinetochores during mid-mitosis. Anaphase spindles begin to arch, and eventually spindle poles come together abruptly, as if the spindle snapped at the point of spindle microtubule overlap in telophase. Segregating chromosomes appeared as elastic clumps and subsequently pulled back and merged. The snapped spindle phenotype was abolished by microtubule destabilization after thiabendazole treatment, accompanied by unequal chromosome segregation or severe defects in spindle extension. Thus, we conclude that ICRF-193-treated, unseparated sister chromatids pulling toward opposite spindle poles produce the arched and snapped telophase spindle. ICRF-193 treatment increased DNA content, suggesting that the failure of sister chromatids to separate properly in anaphase, causes the spindle to break in telophase, resulting in polyploidization.


Asunto(s)
Piperazinas/farmacología , Schizosaccharomyces/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Telofase/efectos de los fármacos , Anafase/efectos de los fármacos , Anafase/fisiología , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/genética , División del Núcleo Celular , Cromátides/efectos de los fármacos , Cromátides/genética , Cromátides/metabolismo , Segregación Cromosómica , Dicetopiperazinas , Cinetocoros/metabolismo , Microtúbulos/efectos de los fármacos , Mitosis , Ploidias , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/fisiología , Telofase/fisiología , Inhibidores de Topoisomerasa II/farmacología
9.
Genes Cells ; 20(6): 481-99, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25847133

RESUMEN

Condensin plays fundamental roles in chromosome dynamics. In this study, we determined the binding sites of condensin on fission yeast (Schizosaccharomyces pombe) chromosomes at the level of nucleotide sequences using chromatin immunoprecipitation (ChIP) and ChIP sequencing (ChIP-seq). We found that condensin binds to RNA polymerase I-, II- and III-transcribed genes during both mitosis and interphase, and we focused on pol II constitutive and inducible genes. Accumulation sites for condensin are distinct from those of cohesin and DNA topoisomerase II. Using cell cycle stage and heat-shock-inducible genes, we show that pol II-mediated transcripts cause condensin accumulation. First, condensin's enrichment on mitotically activated genes was abolished by deleting the sep1(+) gene that encodes an M-phase-specific forkhead transcription factor. Second, by raising the temperature, condensin accumulation was rapidly induced at heat-shock protein genes in interphase and even during mid-mitosis. In interphase, condensin accumulates preferentially during the postreplicative phase. Pol II-mediated transcription was neither repressed nor activated by condensin, as levels of transcripts per se did not change when mutant condensin failed to associate with chromosomal DNA. However, massive chromosome missegregation occurred, suggesting that abundant pol II transcription may require active condensin before proper chromosome segregation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/genética , Complejos Multiproteicos/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Schizosaccharomyces/metabolismo , Inmunoprecipitación de Cromatina , Segregación Cromosómica , Factores de Transcripción Forkhead/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Mitosis , Datos de Secuencia Molecular , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Regulación hacia Arriba
10.
PLoS One ; 10(3): e0119347, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25764183

RESUMEN

Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes) subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo) repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe) mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Reparación del ADN , ADN de Hongos/metabolismo , Ploidias , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Centrómero/efectos de los fármacos , Cromosomas Fúngicos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Estructura Terciaria de Proteína , Schizosaccharomyces/metabolismo , Tiabendazol/farmacología
11.
Open Biol ; 4(12)2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25520186

RESUMEN

Condensin, which contains two structural maintenance of chromosome (SMC) subunits and three regulatory non-SMC subunits, is essential for many chromosomal functions, including mitotic chromosome condensation and segregation. The ATPase domain of the SMC subunit comprises two termini connected by a long helical domain that is interrupted by a central hinge. The role of the ATPase domain has remained elusive. Here we report that the condensin SMC subunit of the fission yeast Schizosaccharomyces pombe is phosphorylated in a manner that requires the presence of the intact SMC ATPase Walker motif. Principal phosphorylation sites reside in the conserved, glycine-rich stretch at the hinge interface surrounded by the highly basic DNA-binding patch. Phosphorylation reduces affinity for DNA. Consistently, phosphomimetic mutants produce severe mitotic phenotypes. Structural evidence suggests that prior opening (though slight) of the hinge is necessary for phosphorylation, which is implicated in condensin's dissociation from and its progression along DNA.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Dominio Catalítico , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Secuencia Conservada , Proteínas de Unión al ADN , Modelos Moleculares , Complejos Multiproteicos , Mutación , Fosforilación , Estructura Secundaria de Proteína , Schizosaccharomyces/química , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Vanadatos/farmacología
12.
J Cell Sci ; 124(Pt 11): 1795-807, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21540296

RESUMEN

Condensin is a conserved protein complex that functions in chromosome condensation and segregation. It has not been previously unequivocally determined whether condensin is required throughout mitosis. Here, we examined whether Schizosaccharomyces pombe condensin continuously acts on chromosomes during mitosis and compared its role with that of DNA topoisomerase II (Top2). Using double mutants containing a temperature-sensitive allele of the condensin SMC2 subunit cut14 (cut14-208) or of top2, together with the cold-sensitive nda3-KM311 mutation (in ß-tubulin), temperature-shift experiments were performed. These experiments allowed inactivation of condensin or Top2 at various stages throughout mitosis, even after late anaphase. The results established that mitotic chromosomes require condensin and Top2 throughout mitosis, even in telophase. We then showed that the Cnd2 subunit of condensin (also known as Barren) is the target subunit of Aurora-B-like kinase Ark1 and that Ark1-mediated phosphorylation of Cnd2 occurred throughout mitosis. The phosphorylation sites in Cnd2 were determined by mass spectrometry, and alanine and glutamate residue replacement mutant constructs for these sites were constructed. Alanine substitution mutants of Cnd2, which mimic the unphosphorylated protein, exhibited broad mitotic defects, including at telophase, and overexpression of these constructs caused a severe dominant-negative effect. By contrast, glutamate substitution mutants, which mimic the phosphorylated protein, alleviated the segregation defect in Ark1-inhibited cells. In telophase, the condensin subunits in cut14-208 mutant accumulated in lumps that contained telomeric DNA and proteins that failed to segregate. Condensin might thus serve to keep the segregated chromosomes apart during telophase.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Telofase , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Anafase , Animales , Aurora Quinasas , Segregación Cromosómica/genética , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Conejos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Proteínas de Schizosaccharomyces pombe/genética , Telómero/genética , Telómero/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
Mol Cell Biol ; 31(3): 495-506, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21098121

RESUMEN

Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1(+) causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a "cut" (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.


Asunto(s)
Segregación Cromosómica , Cromosomas Fúngicos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Unión a Telómeros/metabolismo , Segregación Cromosómica/efectos de los fármacos , Exodesoxirribonucleasas/metabolismo , Silenciador del Gen/efectos de los fármacos , Células HeLa , Humanos , Viabilidad Microbiana/efectos de los fármacos , Mitosis/efectos de los fármacos , Mutación/genética , RecQ Helicasas/metabolismo , Recombinación Genética/efectos de los fármacos , Proteína de Replicación A/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Complejo Shelterina , Telómero/metabolismo , Tiabendazol/farmacología , Vinblastina/farmacología , Helicasa del Síndrome de Werner
14.
Open Biol ; 1(3): 110007, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22645648

RESUMEN

Target of rapamycin complexes (TORCs), which are vital for nutrient utilization, contain a catalytic subunit with the phosphatidyl inositol kinase-related kinase (PIKK) motif. TORC1 is required for cell growth, while the functions of TORC2 are less well understood. We show here that the fission yeast Schizosaccharomyces pombe TORC2 has a cell cycle role through determining the proper timing of Cdc2 Tyr15 dephosphorylation and the cell size under limited glucose, whereas TORC1 restrains mitosis and opposes securin-separase, which are essential for chromosome segregation. These results were obtained using the previously isolated TORC1 mutant tor2-L2048S in the phosphatidyl inositol kinase (PIK) domain and a new TORC2 mutant tor1-L2045D, which harbours a mutation in the same site. While mutated TORC1 and TORC2 displayed diminished kinase activity and FKBP12/Fkh1-dependent rapamycin sensitivity, their phenotypes were nearly opposite in mitosis. Premature mitosis and the G2-M delay occurred in TORC1 and TORC2 mutants, respectively. Surprisingly, separase/cut1-securin/cut2 mutants were rescued by TORC1/tor2-L2048S mutation or rapamycin addition or even Fkh1 deletion, whereas these mutants showed synthetic defect with TORC2/tor1-L2045D. TORC1 and TORC2 coordinate growth, mitosis and cell size control, such as Wee1 and Cdc25 do for the entry into mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Endopeptidasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , División Celular , Endopeptidasas/genética , Genes Fúngicos , Mitosis , Datos de Secuencia Molecular , Mutación , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/genética , Proteínas Quinasas/química , Proteínas Quinasas/genética , Subunidades de Proteína , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Securina , Separasa , Homología de Secuencia de Aminoácido , Sirolimus/farmacología , Huso Acromático/efectos de los fármacos , Huso Acromático/genética , Tiazolidinas/farmacología
15.
Open Biol ; 1(4): 110023, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22645654

RESUMEN

Condensin is required for chromosome dynamics and diverse DNA metabolism. How condensin works, however, is not well understood. Condensin contains two structural maintenance of chromosomes (SMC) subunits with the terminal globular domains connected to coiled-coil that is interrupted by the central hinge. Heterotrimeric non-SMC subunits regulate SMC. We identified a novel fission yeast SMC hinge mutant, cut14-Y1, which displayed defects in DNA damage repair and chromosome segregation. It contains an amino acid substitution at a conserved hinge residue of Cut14/SMC2, resulting in diminished DNA binding and annealing. A replication protein A mutant, ssb1-418, greatly alleviated the repair and mitotic defects of cut14-Y1. Ssb1 protein formed nucleolar foci in cut14-Y1 cells, but the number of foci was diminished in cut14-Y1 ssb1-418 double mutants. Consistent with the above results, Ssb1 protein bound to single-strand DNA was removed by condensin or the SMC dimer through DNA reannealing in vitro. Similarly, RNA hybridized to DNA may be removed by the SMC dimer. Thus, condensin may wind up DNA strands to unload chromosomal components after DNA repair and prior to mitosis. We show that 16 suppressor mutations of cut14-Y1 were all mapped within the hinge domain, which surrounded the original L543 mutation site.


Asunto(s)
Adenosina Trifosfatasas/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Complejos Multiproteicos/química , Proteína de Replicación A/química , Proteínas de Schizosaccharomyces pombe/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Mapeo Cromosómico , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Daño del ADN , Reparación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Interfase , Mitosis , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homología de Secuencia de Aminoácido
16.
J Cell Biol ; 180(6): 1115-31, 2008 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-18362178

RESUMEN

The condensin complex has a fundamental role in chromosome dynamics. In this study, we report that accumulation of Schizosaccharomyces pombe condensin at mitotic kinetochores and ribosomal DNAs (rDNAs) occurs in multiple steps and is necessary for normal segregation of the sister kinetochores and rDNAs. Nuclear entry of condensin at the onset of mitosis requires Cut15/importin alpha and Cdc2 phosphorylation. Ark1/aurora and Cut17/Bir1/survivin are needed to dock the condensin at both the kinetochores and rDNAs. Furthermore, proteins that are necessary to form the chromatin architecture of the kinetochores (Mis6, Cnp1, and Mis13) and rDNAs (Nuc1 and Acr1) are required for condensin to accumulate specifically at these sites. Acr1 (accumulation of condensin at rDNA 1) is an rDNA upstream sequence binding protein that physically interacts with Rrn5, Rrn11, Rrn7, and Spp27 and is required for the proper accumulation of Nuc1 at rDNAs. The mechanism of condensin accumulation at the kinetochores may be conserved, as human condensin II fails to accumulate at kinetochores in hMis6 RNA interference-treated cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Ribosómico/fisiología , Proteínas de Unión al ADN/metabolismo , Cinetocoros/metabolismo , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Schizosaccharomyces/metabolismo , Huso Acromático/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Secuencia Conservada/fisiología , Proteínas de Unión al ADN/genética , Evolución Molecular , Regulación Fúngica de la Expresión Génica/fisiología , Cinetocoros/ultraestructura , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/genética , Huso Acromático/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...