Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FASEB J ; 36(4): e22260, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35315960

RESUMEN

Deficiencies in Cystathionine-ß-synthase (CBS) lead to hyperhomocysteinemia (HHCy), which is considered a risk factor for cardiovascular, bone and neurological disease. Moreover, CBS is important for the production of cysteine, hydrogen sulfide (H2 S) and glutathione. Studying the biological role of CBS in adult mice has been severely hampered by embryological disturbances and perinatal mortality. To overcome these issues and assess the effects of whole-body CBS deficiency in adult mice, we engineered and characterized a Cre-inducible Cbs knockout model during ageing. No perinatal mortality occurred before Cbs-/- induction at 10 weeks of age. Mice were followed until 90 weeks of age and ablation of Cbs was confirmed in liver and kidney but not in brain. Severe HHCy was observed in Cbs-/- (289 ± 58 µM) but not in Cbs+/- or control mice (<10 µM). Cbs-/- showed impaired growth, facial alopecia, endothelial dysfunction in absence of increased mortality, and signs of liver or kidney damage. CBS expression in skin localized to sebaceous glands and epidermis, suggesting local effects of Cbs-/- on alopecia. Cbs-/- showed increased markers of oxidative stress and senescence but expression of other H2 S producing enzymes (CSE and 3-MST) was not affected. CBS deficiency severely impaired H2 S production capacity in liver, but not in brain or kidney. In summary, Cbs-/- mice presented a mild phenotype without mortality despite severe HHCy. The findings demonstrate that HHCy is not directly linked to development of end organ damage.


Asunto(s)
Homocistinuria , Sulfuro de Hidrógeno , Hiperhomocisteinemia , Envejecimiento , Alopecia , Animales , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Homocistinuria/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Ratones , Ratones Noqueados , Embarazo
2.
Eur J Pharm Sci ; 168: 106033, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610451

RESUMEN

Acute kidney injury (AKI) is a global healthcare burden attributable to high mortality and staggering costs of dialysis. The underlying causes of AKI include hypothermia and rewarming (H/R), ischemia/reperfusion (I/R), mitochondrial dysfunction and reactive oxygen species production. Inspired by the mechanisms conferring organ protection in hibernating hamster, 6-chromanol derived compounds were developed to address the need of effective prevention and treatment of AKI. Here we report on the pre-clinical screening of 6-chromanol leads that confer protection during I/R to select compounds with favorable profiles for clinical testing in AKI. A library of 6-chromanols (n = 63) was screened in silico for pharmacochemical properties and druggability. Selected compounds (n = 15) were screened for the potency to protect HEK293 cells from H/R cell death and subjected to a panel of in vitro safety assays. Based on these parameters, SUL-138 was selected as the lead compound and was found to safeguard kidney function and decrease renal injury after I/R in rats. The compound was without cardiovascular or respiratory effects in vivo. SUL-138 pharmacokinetics of control animals (mouse, rat) and those undergoing I/R (rat) was identical, showing a two-phase elimination profile with terminal half-life of about 8 h. Collectively, our phenotype-based screening approach led to the identification of 3 candidates for pre-clinical studies (5%, 3/64). SUL-138 emerged from this small-scale library of 6-chromanols as a novel prophylactic for AKI. The presented efficacy and safety data provide a basis for future development and clinical testing. SECTION ASSIGNMENTS: : Drug discovery and translational medicine, renal, metabolism SIGNIFICANCE STATEMENT: : Based on in silico druggability parameters, a 63 compound 6-chromanol library was narrowed down to 15 compounds. These compounds were subjected to phenotypical screening of cell survival following hypothermia damage and hit compounds were identified. After subsequent assessment of in vivo efficacy, toxicity, pharmacokinetics, and cardiovascular and respiratory safety, SUL-138 emerged as a lead compound that prevented kidney injury after ischemia/reperfusion and demonstrated a favorable pharmacokinetic profile unaffected by renal ischemia.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Animales , Cromanos , Células HEK293 , Humanos , Isquemia , Riñón , Plomo , Ratones , Ratas , Reperfusión , Daño por Reperfusión/prevención & control , Ciencia Traslacional Biomédica
3.
Vascul Pharmacol ; 142: 106945, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34801679

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis is a major contributor to global mortality and is accompanied by vascular inflammation and endothelial dysfunction. Perivascular adipose tissue (PVAT) is an established regulator of vascular function with emerging implications in atherosclerosis. We investigated the modulation of aortic relaxation by PVAT in aged rats with apolipoprotein E deficiency (ApoE-/-) fed a high-fat diet as a model of early atherosclerosis. METHODS AND RESULTS: ApoE-/- rats (N = 7) and wild-type Sprague-Dawley controls (ApoE+/+, N = 8) received high-fat diet for 51 weeks. Hyperlipidemia was confirmed in ApoE-/- rats by elevated plasma cholesterol (p < 0.001) and triglyceride (p = 0.025) levels. Early atherosclerosis was supported by increased intima/media thickness ratio (p < 0.01) and ED1-positive macrophage influx in ApoE-/- aortic intima (p < 0.001). Inflammation in ApoE-/- PVAT was characteristic by an increased [18F]FDG uptake (p < 0.01), ED1-positive macrophage influx (p = 0.0003), mRNA expression levels of CD68 (p < 0.001) and IL-1ß (p < 0.01), and upregulated iNOS protein (p = 0.011). The mRNAs of MCP-1, IL-6 and adiponectin remained unchanged in PVAT. Aortic PVAT volume measured with micro-PET/CT was increased in ApoE-/- rats (p < 0.01). Maximal endothelium-dependent relaxation (EDR) to acetylcholine in ApoE-/- aortic rings without PVAT was severely impaired (p = 0.012) compared with controls, while ApoE-/- aortic rings with PVAT showed higher EDR than controls. All EDR responses were blocked by L-NMMA and the expression of eNOS mRNA was increased in ApoE-/- PVAT (p = 0.035). CONCLUSION: Using a rat ApoE-/- model of early atherosclerosis, we capture a novel mechanism by which inflammatory PVAT compensates severe endothelial dysfunction by contributing NO upon cholinergic stimulation.


Asunto(s)
Aterosclerosis , Óxido Nítrico , Tejido Adiposo/metabolismo , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Óxido Nítrico/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley
4.
Sci Rep ; 9(1): 13, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626882

RESUMEN

SUL-compounds are protectants from cold-induced ischemia and mitochondrial dysfunction. We discovered that adding SUL-121 to renal grafts during warm machine reperfusion elicits a rapid improvement in perfusion parameters. Therefore, we investigate the molecular mechanisms of action in porcine intrarenal arteries (PIRA). Porcine kidneys were stored on ice overnight and perfusion parameters were recorded during treatment with SUL-compounds. Agonist-induced vasoconstriction was measured in isolated PIRA after pre-incubation with SUL-compounds. Receptor binding and calcium transients were assessed in α1-adrenoceptor (α1-AR) transgenic CHO cells. Molecular docking simulation was performed using Schrödinger software. Renal pressure during warm reperfusion was reduced by SUL-121 (-11.9 ± 2.50 mmHg) and its (R)-enantiomer SUL-150 (-13.2 ± 2.77 mmHg), but not by the (S)-enantiomer SUL-151 (-1.33 ± 1.26 mmHg). Additionally, SUL-150 improved renal flow (16.21 ± 1.71 mL/min to 21.94 ± 1.38 mL/min). SUL-121 and SUL-150 competitively inhibited PIRA contraction responses to phenylephrine, while other 6-chromanols were without effect. SUL-150 similarly inhibited phenylephrine-induced calcium influx and effectively displaced [7-Methoxy-3H]-prazosin in CHO cells. Docking simulation to the α1-AR revealed shared binding characteristics between prazosin and SUL-150. SUL-150 is a novel α1-AR antagonist with the potential to improve renal graft perfusion after hypothermic storage. In combination with previously reported protective effects, SUL-150 emerges as a novel protectant in organ transplantation.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Cromanos/farmacología , Riñón/irrigación sanguínea , Piperazinas/farmacología , Receptores Adrenérgicos alfa 1/metabolismo , Vasoconstricción/efectos de los fármacos , Animales , Células CHO , Cricetulus , Reperfusión/métodos , Porcinos
5.
Sci Rep ; 7(1): 11165, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894214

RESUMEN

Diabetic nephropathy is still a common complication of type 2 diabetes mellitus (T2DM) and improvement of endothelial dysfunction (ED) and inhibition of reactive oxygen species (ROS) are considered important targets for new therapies. Recently, we developed a new class of compounds (Sul compounds) which inhibit mitochondrial ROS production. Here, we tested the therapeutic effects of Sul-121 on ED and kidney damage in experimental T2DM. Diabetic db/db and lean mice were implanted with osmotic pumps delivering Sul-121 (2.2 mg/kg/day) or vehicle from age 10 to 18 weeks. Albuminuria, blood pressure, endothelial mediated relaxation, renal histology, plasma creatinine, and H2O2 levels were assessed. Sul-121 prevented progression of albuminuria and attenuated kidney damage in db/db, as evidenced by lower glomerular fibronectin expression (~50%), decreased focal glomerular sclerosis score (~40%) and normalization of glomerular size and kidney weight. Further, Sul-121 restored endothelium mediated vasorelaxation through increased production of Nitric Oxide production and normalized plasma H2O2 levels. Sul-121 treatment in lean mice demonstrated no observable major side-effects, indicating that Sul-121 is well tolerated. Our data show that Sul-121 inhibits progression of diabetic kidney damage via a mechanism that involves restoration of endothelial function and attenuation of oxidative stress.


Asunto(s)
Antioxidantes/administración & dosificación , Cromanos/administración & dosificación , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Endotelio/fisiología , Riñón/patología , Piperazinas/administración & dosificación , Albuminuria/prevención & control , Animales , Histocitoquímica , Peróxido de Hidrógeno/análisis , Pruebas de Función Renal , Ratones , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...