Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542303

RESUMEN

Dental diseases, including conditions affecting oral structures, have become more common due to unhealthy lifestyle choices. Traditional antibiotic treatments face challenges related to the development of antibiotic resistance in bacteria. Photodynamic antibacterial chemotherapy is emerging as a promising alternative using photosensitizers to generate reactive oxygen species upon exposure to light. This article examines the photosensitizer Rose Bengal (RB) immobilized in hyaluronic acid (HA) for prolonged antibacterial action. The RB-HA conjugate demonstrated a molar ratio of approximately three RB residues to each of the ten units of HA. RB-HA exhibited a high singlet oxygen quantum yield (ΔΦ = 0.90), suggesting its efficacy in photodynamic treatment. A photostability analysis revealed slower photobleaching of RB-HA, which is essential for prolonged application. Under visible light and ultrasonic treatment, RB-HA exhibited effective antibacterial activity against Gram-positive S. aureus and Gram-negative E. coli bacteria for at least 80 days. The gradual release of RB ensured sustained bactericidal concentration. The study establishes RB-HA as a promising candidate for antimicrobial photodynamic and sonodynamic therapy in dental and other medical fields, providing enhanced stability and prolonged antibacterial efficacy.


Asunto(s)
Fotoquimioterapia , Rosa Bengala , Rosa Bengala/farmacología , Rosa Bengala/química , Ácido Hialurónico/farmacología , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Bacterias Gramnegativas
2.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894807

RESUMEN

Food colorants are commonly used as excipients in pharmaceutical and nutraceutical fields, but they have a wide range of other potential applications, for instance, as cytotoxic drugs or mediators of physical antimicrobial treatments. The photodynamic antibacterial activity of several edible food colorants is reported here, including E127, E129, E124, E122, E133, and E150a, alongside Rhein, a natural lipophilic antibacterial and anticancer compound found in medicinal plants. Minimal inhibitory concentration (MIC) values for S. aureus and E. coli showed that E127 and Rhein were effective against both bacteria, while other colorants exhibited low activity against E. coli. In some cases, dark pre-incubation of the colorants with Gram-positive S. aureus increased their photodynamic activity. Adding Rhein to E127 increased the photodynamic activity of the latter in a supportive mode. Optional sensing mechanism pathways of combined E127/Rhein action were suggested. The antibacterial activity of the studied colorants can be ranged as follows: E127/Rhein >> E127 >> E150a > E122 > E124 >> E129 ≈ E133. E127 was also found to exhibit photodynamic properties. Short ultrasonic treatment before illumination caused intensification of E127 photodynamic activity against E. coli when applied alone and especially in combination with Rhein. Food colorants exhibiting photo- and sonodynamic properties may have good potential in food preservation.


Asunto(s)
Colorantes de Alimentos , Colorantes de Alimentos/farmacología , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología
3.
Biomedicines ; 11(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36830977

RESUMEN

Phlomis viscosa Poiret (an evergreen shrub) represents a valuable source of medicinal compounds. In this study, we discovered compounds with antimicrobial and antiviral properties. The aim of this study was to identify compounds of P. viscosa and estimate the antimicrobial and antiviral activity of its phytochemicals. The volatile compounds were identified using gas chromatography/mass spectrometry (GC/MS) analysis. For the identification of nonvolatile components of the extracts, high-performance liquid chromatography (HPLC), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) were applied. Quercetin 3-O-rutinoside and hesperidin caused a significant decrease in the bacterial concentration of Agrobacterium tumefaciens, Xylella fastidiosa and Pseudomonas syringae (p < 0.001). The growth of drug-resistant microorganisms (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Serratia marcescens and Salmonella enteritidis) was inhibited by quercetin 3-O-rutinoside, quercetin 3-O-arabinoside and hesperidin. In addition, these compounds demonstrated antiquorum-sensing properties. Diosmin, hesperidin and quercetin 3-O-arabinoside significantly inhibited varicella zoster virus (VZV) (p < 0.001). Quercetin 3-O-rutinoside and quercetin 3-O-arabinoside were effective against herpes simplex virus 1 (HSV-1), including mutant strains.

4.
Pharmaceutics ; 15(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678875

RESUMEN

Antibiotic resistance of pathogenic bacteria dictates the development of novel treatment modalities such as antimicrobial photodynamic therapy (APDT) utilizing organic dyes termed photosensitizers that exhibit a high cytotoxicity upon light irradiation. Most of the clinically approved photosensitizers are porphyrins that are poorly excitable in the therapeutic near-IR spectral range. In contrast, cyanine dyes function well in the near-IR region, but their phototoxicity, in general, is very low. The introduction of iodine atoms in the cyanine molecules was recently demonstrated to greatly increase their phototoxicity. Herein, we synthesized a series of the new iodinated heptamethine cyanine dyes (ICy7) containing various solubilizing moieties, i.e., negatively charged carboxylic (ICy7COOH) and sulfonic (ICy7SO3H) groups, positively charged triphenylphosphonium (ICy7PPh3), triethylammonium (ICy7NEt3) and amino (ICy7NH2) groups, and neutral amide (ICy7CONHPr) group. The effect of these substituents on the photodynamic eradication of Gram-positive (S. aureus) and Gram-negative (E. coli and P. aeruginosa) pathogens was studied. Cyanine dyes containing the amide and triphenylphosphonium groups were found to be the most efficient for eradication of the investigated bacteria. These dyes are effective at low concentrations of 0.05 µM (33 J/cm2) for S. aureus, 50 µM (200 J/cm2) for E. coli, and 5 µM (100 J/cm2) for P. aeruginosa and considered, therefore, promising photosensitizers for APDT applications. The innovation of the new photosensitizers consisted of a combination of the heavy-atom effect that increases singlet oxygen generation with the solubilizing group's effect improving cell uptake, and with effective near-IR excitation. Such a combination helped to noticeably increase the APDT efficacy and should pave the way for the development of more advanced photosensitizers for clinical use.

5.
PLoS One ; 17(9): e0274954, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36173987

RESUMEN

Combination of photosensitizers (PS) with nanotechnology can improve the therapeutic efficiency of clinical Photodynamic Therapy (PDT) by converting visible light reactive PSs into Near-Infrared (NIR) light responsive molecules using Harmonic Nanoparticles (HNP). To test the PDT efficiency of HNP-PS conjugates, pathogenic S. aureus cell cultures were treated with perovskite (Barium Titanate) Second Harmonic Generation (SHG) nanoparticles conjugated to photosensitizers (PS) (we compared both FDA approved Protoporphyrin IX and Curcumin) and subjected to a femtosecond pulsed Near-Infrared (NIR) laser (800 nm, 232-228 mW, 12-15 fs pulse width at repetition rate of 76.9 MHz) for 10 minutes each. NIR PDT using Barium Titanate (BT) conjugated with Protoporphyrin IX as HNP-PS conjugate reduced the viability of S. aureus cells by 77.3 ± 9.7% while BT conjugated with Curcumin did not elicit any significant effect. Conventional PSs reactive only to visible spectrum light coupled with SHG nanoparticles enables the use of higher tissue penetrating NIR light to generate an efficient photodynamic effect, thereby overcoming low light penetration and tissue specificity of conventional visible light PDT treatments.


Asunto(s)
Curcumina , Nanopartículas , Fotoquimioterapia , Microscopía de Generación del Segundo Armónico , Bario , Curcumina/farmacología , Luz , Fármacos Fotosensibilizantes/farmacología , Staphylococcus aureus
6.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409076

RESUMEN

Photosensitizers (PSs) are known as powerful antibacterial agents that are activated by direct exposure to visible light. PSs can be noncovalently entrapped into the silica gel network for their controlled release into a contaminated area. The immobilization of PS-containing gel matrices on a polymer support expands their possible applications, such as antibacterial surfaces and coatings, which can be used for the disinfection of liquids. In the current study, we report the use of Rose Bengal (RB) incorporated into organically modified silica matrices (RB@ORMOSIL matrices) by the sol-gel technique. The RB matrices exhibit high activity against Gram-positive and Gram-negative bacteria under illumination by white light. The amount and timing of solidifier addition to the matrix affected the interaction of the latter with the RB, which in turn could affect the antibacterial activity of RB. The most active specimen against both Gram-positive and Gram-negative bacterial cells was the RB6@ORMOSIL matrix immobilized on a linear low-density polyethylene surface, which was prepared by an easy, cost-effective, and simple thermal adhesion method. This specimen, RB6@OR@LLDPE, showed the low release of RB in an aqueous environment, and exhibited high long-term antibacterial activity in at least 14 rounds of recycled use against S. aureus and in 11 rounds against E. coli.


Asunto(s)
Antibacterianos , Rosa Bengala , Antibacterianos/farmacología , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Fármacos Fotosensibilizantes , Rosa Bengala/farmacología , Dióxido de Silicio , Staphylococcus aureus
7.
Molecules ; 25(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333949

RESUMEN

Replacing fossil fuels with biodiesel enables the emission of greenhouse gases to be decreased and reduces dependence on fossil fuels in countries with poor natural resources. Biodiesel can be produced by an esterification reaction between free fatty acids (FFAs) and methanol or by transesterification of triglycerides from oils. Both reactions require homogeneous or heterogeneous catalysis. Production of biodiesel catalyzed by heterogeneous catalysts seems to be the preferred route, enabling easy product separation. As we have previously shown, the Lewis acids AlCl3 and BF3 can serve as highly efficient catalysts under ultrasonic activation. The present study focused on the development of oleic acid (OA) esterification with methanol by the same catalysts immobilized in silica matrices using the sol-gel synthesis route. During the course of immobilization, AlCl3 converts to AlCl3 × 6H2O (aluminite) and BF3 is hydrolyzed with the production of B2O3. The immobilized catalysts can be reused or involved in a continuous process. The possibility of biodiesel production using immobilized catalysts under ultrasonic activation is shown for the conversion of FFAs into biodiesel in batch and continuous mode.


Asunto(s)
Biocombustibles , Ácidos de Lewis/química , Catálisis , Geles , Aceites de Plantas/química , Dióxido de Silicio/química
8.
Polymers (Basel) ; 12(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751661

RESUMEN

Consumption of contaminated water may lead to dangerous and even fatal water-borne diseases. Disinfection of drinking water is the most effective solution for this problem. The most common water treatment methods are based on the use of toxic disinfectants. Composites of polymers with nanosized metals and their oxides may become a good alternative to the existing methods. Expanding the scope of our previous publication, copper, cuprous, and copper oxide nanoparticles were immobilized onto linear low-density polyethylene by a simple thermal adhesion method. The antibacterial efficiency of the immobilized nanoparticles was tested against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in batch experiments and for the first time the efficiency of these composites is reported for continuous flow regime. Immobilized copper and cuprous oxide nanoparticles demonstrated a high ability to eradicate bacteria after 30 min. These composites showed no or very limited leaching of copper ions into the aqueous phase both in the presence and in the absence of a bacterial suspension. Immobilized copper and cuprous oxide nanoparticles can be used for batch or continuous disinfection of water.

9.
Photodiagnosis Photodyn Ther ; 31: 101866, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32534248

RESUMEN

BACKGROUND: Staphylococcus aureus (S. aureus) is a Gram-positive bacteria and major human pathogen which can cause a wide variety of serious infections when it enters the bloodstream or internal tissues. Antimicrobial photodynamic therapy (APDT) utilizing a light-activated dye (photosensitizer) is a powerful method for in vitro and in vivo eradication of S. aureus and other pathogenic bacteria. However, the development of highly efficient, long-wavelength photosensitizers showing high phototoxicity to pathogens and low dark toxicity is still challenging. AIM: To develop a highly efficient, long-wavelength photosensitizer for photodynamic inactivation of S. aureus. METHOD: Synthesis of the new photosensitizer, hexa-iodinated quinono-cyanine dye IQCy and investigation of the dark and light-induced toxicity of this dye compared to known photosensitizers Chlorin e6 (Ce6) and HITC towards S. aureus. RESULTS: When exposed to 14.9 J/cm2 white LED light, 0.5 µM of IQCy, Ce6 and HITC inactivate, respectively, 99 %, 40 % and 30 % of S. aureus and at 0.05 µM and 27.9 J/cm2 - 71 %, 18 % and 9%, which is much better compared to Ce6 and HITC. IQCy exhibits no dark toxicity at least at 10 µM dye concentration. CONCLUSIONS: IQCy demonstrates a more pronounced photodynamic inactivation of S. aureus as compared to Ce6 and HITC and can be employed for the eradication of these bacteria at lower concentration and reduced light dose.


Asunto(s)
Fotoquimioterapia , Infecciones Estafilocócicas , Hexosaminidasa A , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Staphylococcus aureus
10.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31261890

RESUMEN

The global spread of bacterial resistance to antibiotics promotes a search for alternative approaches to eradication of pathogenic bacteria. One alternative is using photosensitizers for inhibition of Gram-positive and Gram-negative bacteria under illumination. Due to low penetration of visible light into tissues, applications of photosensitizers are currently limited to treatment of superficial local infections. Excitation of photosensitizers in the dark can be applied to overcome this problem. In the present work, dark antibacterial activity of the photosensitizer Rose Bengal alone and in combination with antibiotics was studied. The minimum inhibitory concentrations (MIC) value of Rose Bengal against S. aureus dropped in the presence of sub-MIC concentrations of ciprofloxacin, levofloxacin, methicillin, and gentamicin. Free Rose Bengal at sub-MIC concentrations can be excited in the dark by ultrasound at 38 kHz. Rose Bengal immobilized onto silicon showed good antibacterial activity in the dark under ultrasonic activation, probably because of Rose Bengal leaching from the polymer during the treatment. Exposure of bacteria to Rose Bengal in the dark under irradiation by electromagnetic radio frequency waves in the 9 to 12 GHz range caused a decrease in the bacterial concentration, presumably due to resonant absorption of electromagnetic energy, its transformation into heat and subsequent excitation of Rose Bengal.


Asunto(s)
Antibacterianos/farmacología , Fármacos Fotosensibilizantes/farmacología , Rosa Bengala/farmacología , Fármacos Fotosensibilizantes/efectos de la radiación , Ondas de Radio , Rosa Bengala/efectos de la radiación , Silicio/química , Staphylococcus aureus/efectos de los fármacos , Ondas Ultrasónicas
11.
Int J Mol Sci ; 20(2)2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30669551

RESUMEN

Cuprous oxide nanoparticles (Cu2ONPs) were used for preparing composites with linear low-density polyethylene (LLDPE) by co-extrusion, thermal adhesion, and attachment using ethyl cyanoacrylate, trimethoxyvinylsilane, and epoxy resin. The composites were examined by Scanning electron microscope and tested for their antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. All of these composites-except for the one obtained by extrusion-eradicated cells of both bacteria within half an hour. The composite prepared by thermal adhesion of Cu2ONPs on LLDPE had the highest external exposure of nanoparticles and exhibited the highest activity against the bacteria. This composite and the one obtained using ethyl cyanoacrylate showed no leaching of copper ions into the aqueous phase. Copper ion leaching from composites prepared with trimethoxyvinylsilane and epoxy resin was very low. The antibacterial activity of the composites can be rated as follows: obtained by thermal adhesion > obtained using ethyl cyanoacrylate > obtained using trimethoxyvinylsilane > obtained using epoxy resin > obtained by extrusion. The composites with the highest activity are potential materials for tap water and wastewater disinfection.


Asunto(s)
Antibacterianos/farmacología , Cobre/farmacología , Nanopartículas , Polietileno , Antibacterianos/química , Cobre/química , Desinfección , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Nanopartículas/ultraestructura , Polietileno/química , Difracción de Rayos X
12.
Molecules ; 23(12)2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513653

RESUMEN

The well-known and rapidly growing phenomenon of bacterial resistance to antibiotics is caused by uncontrolled, excessive and inappropriate use of antibiotics. One of alternatives to antibiotics is Photodynamic Antibacterial Chemotherapy (PACT). In the present study, the effect of PACT using a photosensitizer Rose Bengal alone and in combination with antibiotics including methicillin and derivatives of sulfanilamide synthesized by us was tested against antibiotic-sensitive and antibiotic-resistant clinical isolates of Gram-positive S. aureus and Gram-negative P. aeruginosa. Antibiotic-sensitive and resistant strains of P. aeruginosa were eradicated by Rose Bengal under illumination and by sulfanilamide but were not inhibited by new sulfanilamide derivatives. No increase in sensitivity of P. aeruginosa cells to sulfanilamide was observed upon a combination of Rose Bengal and sulfanilamide under illumination. All tested S. aureus strains (MSSA and MRSA) were effectively inhibited by PACT. When treated with sub-MIC concentrations of Rose Bengal under illumination, the minimum inhibitory concentrations (MIC) of methicillin decreased significantly for MSSA and MRSA strains. In some cases, antibiotic sensitivity of resistant strains can be restored by combining antibiotics with PACT.


Asunto(s)
Antibacterianos/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/aislamiento & purificación , Staphylococcus aureus/aislamiento & purificación , Sulfanilamida/farmacología
13.
Environ Sci Pollut Res Int ; 23(19): 19613-25, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27392627

RESUMEN

Environmental pollution with heavy metals is a very serious ecological problem, which can be solved by bioremediation of metal ions by microorganisms. Yeast cells, especially Saccharomyces cerevisiae, are known to exhibit a good natural ability to remove heavy metal ions from an aqueous phase. In the present work, an attempt was made to increase the copper-binding properties of S. cerevisiae. For this purpose, new strains of S. cerevisiae were produced by construction and integration of recombinant human MT2 and GFP-hMT2 genes into yeast cells. The ySA4001 strain expressed GFP-hMT2p under the constitutive pADH1 promoter and the ySA4002 and ySA4003 strains expressed hMT2 and GFP-hMT2 under the inducible pCUP1 promoter. An additional yMNWTA01 strain was obtained by adaptation of the BY4743 wild type S. cerevisiae strain to high copper concentrations. The yMNWTA01, ySA4002, and ySA4003 strains exhibited an enhanced ability for copper ion bioremediation.


Asunto(s)
Biodegradación Ambiental , Cobre/metabolismo , Metaloproteinasa 15 de la Matriz/metabolismo , Saccharomyces cerevisiae/genética , Cobre/química , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Humanos , Metaloproteinasa 15 de la Matriz/genética , Metalotioneína/metabolismo , Metales Pesados , Organismos Modificados Genéticamente , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
14.
Int J Mol Sci ; 15(9): 14984-96, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25158236

RESUMEN

The photosensitizers Rose Bengal (RB) and methylene blue (MB), when immobilized in polystyrene, were found to exhibit high antibacterial activity in a continuous regime. The photosensitizers were immobilized by dissolution in chloroform, together with polystyrene, with further evaporation of the solvent, yielding thin polymeric films. Shallow reservoirs, bottom-covered with these films, were used for constructing continuous-flow photoreactors for the eradication of Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli and wastewater bacteria under illumination with visible white light using a luminescent lamp at a 1.8 mW·cm⁻² fluence rate. The bacterial concentration decreased by two to five orders of magnitude in separate reactors with either immobilized RB or MB, as well as in three reactors connected in series, which contained one of the photosensitizers. Bacterial eradication reached more than five orders of magnitude in two reactors connected in series, where the first reactor contained immobilized RB and the second contained immobilized MB.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Azul de Metileno/farmacología , Fármacos Fotosensibilizantes/farmacología , Poliestirenos/química , Rosa Bengala/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Cloroformo/química , Azul de Metileno/química , Fármacos Fotosensibilizantes/química , Rosa Bengala/química , Ingeniería Sanitaria/métodos
15.
Biomed Res Int ; 2013: 684930, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23509759

RESUMEN

Photodynamic antimicrobial chemotherapy based on photosensitizers activated by illumination is limited by poor penetration of visible light through skin and tissues. In order to overcome this problem, Rose Bengal was excited in the dark by 28 kHz ultrasound and was applied for inactivation of bacteria. It is demonstrated, for the first time, that the sonodynamic technique is effective for eradication of gram-positive Staphylococcus aureus and gram-negative Escherichia coli. The net sonodynamic effect was calculated as a 3-4 log10 reduction in bacteria concentration, depending on the cell and the Rose Bengal concentration and the treatment time. Sonodynamic treatment may become a novel and effective form of antimicrobial therapy and can be used for low-temperature sterilization of medical instruments and surgical accessories.


Asunto(s)
Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Rosa Bengala/farmacología , Esterilización/métodos , Antiinfecciosos/farmacología , Frío , Escherichia coli/efectos de los fármacos , Colorantes Fluorescentes/farmacología , Luz , Staphylococcus aureus/efectos de los fármacos , Células Madre
16.
Photochem Photobiol ; 89(3): 671-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23163697

RESUMEN

Immobilization of photosensitizers in polymers opens prospects for their continuous and reusable application. Methylene blue (MB) and Rose Bengal were immobilized in polystyrene by mixing solutions of the photosensitizers in chloroform with a polymer solution, followed by air evaporation of the solvent. This procedure yielded 15-140 µm polymer films with a porous surface structure. The method chosen for immobilization ensured 99% enclosure of the photosensitizer in the polymer. The antimicrobial activity of the immobilized photosensitizers was tested against Gram-positive and Gram-negative bacteria. It was found that both immobilized photosensitizers exhibited high antimicrobial properties, and caused by a 1.5-3 log10 reduction in the bacterial concentrations to their total eradication. The bactericidal effect of the immobilized photosensitizers depended on the cell concentration and on the illumination conditions. Scanning electron microscopy was used to prove that immobilized photosensitizers excited by white light caused irreversible damage to microbial cells. Photosensitizers immobilized on a solid phase can be applied for continuous disinfection of wastewater bacteria.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Azul de Metileno/farmacología , Fármacos Fotosensibilizantes/farmacología , Poliestirenos/química , Rosa Bengala/farmacología , Staphylococcus aureus/efectos de los fármacos , Adsorción , Antibacterianos/química , Desinfección/métodos , Relación Dosis-Respuesta en la Radiación , Escherichia coli/crecimiento & desarrollo , Escherichia coli/efectos de la radiación , Luz , Azul de Metileno/química , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Fármacos Fotosensibilizantes/química , Rosa Bengala/química , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/efectos de la radiación
17.
Photochem Photobiol ; 86(6): 1350-5, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20880227

RESUMEN

The increasing resistance of bacteria to antibiotics is a serious problem, caused in part by excessive and improper use of these drugs. One alternative to traditional antibiotic therapy is photodynamic antimicrobial chemotherapy (PACT) which is based on the use of a photosensitizer (PS), activated by illumination with visible light. The poor penetration of visible light through the skin limits the application of PACT to the treatment of skin infections or the use of invasive procedures. To overcome this problem we report the exploitation of light emitted as a result of the chemiluminescent reaction of luminol to excite the PS and we call this process chemiluminescent photodynamic antimicrobial therapy (CPAT). We studied the effect of free and liposome-encapsulated PS (methylene blue or toluidine blue) on bacteria under excitation by either white external light or chemiluminescence emitted by free or liposome-enclosed luminol. PACT showed slightly better performance that CPAT for free and encapsulated PS for both types of bacteria. CPAT resulted in a three log suppression of Staphylococcus aureus and two log suppression of Escherichia coli growth. The use of CPAT may prove to be a novel and more effective form of antimicrobial therapy, particularly for internal infections not easily accessible to traditional PACT.


Asunto(s)
Antiinfecciosos/administración & dosificación , Bacterias/efectos de los fármacos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Bacterias/patogenicidad , Bacterias/efectos de la radiación , Infecciones Bacterianas/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Humanos , Técnicas In Vitro , Liposomas , Luminiscencia , Azul de Metileno/administración & dosificación , Staphylococcus aureus/efectos de los fármacos , Cloruro de Tolonio/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...