Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 38(17): e9846, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38923663

RESUMEN

RATIONALE: Lomerizine (LMZ) is an antimigraine drug that works as a calcium channel blocker and has selective effects on the central nervous system. It is metabolized into trimetazidine (TMZ), which is a prohibited substance owing to its performance-enhancing effects in both human and animal sports. Effective doping control measures are imperative to distinguish the source of TMZ in samples to ensure integrity and fairness of the sport, therefore a comprehensive analysis of LMZ metabolites is essential to identify potential biomarkers in camel urine for effective doping control. METHODS: Camel urine samples were collected from four healthy animals following a single oral administration of LMZ at a dosage of 1 mg/kg body weight. In vitro studies were conducted using homogenized camel liver samples. Lomerizine and its metabolites were extracted using solid-phase extraction and analyzed with a Thermo Fisher Orbitrap Exploris liquid chromatography mass spectrometry system. The acquired data was processed with the Compound Discoverer software. RESULTS: The study conducted a comprehensive analysis of LMZ metabolites in camels and identified 10 phase I and one phase II metabolites. The primary pathway for the formation of phase I metabolites was de-alkylation, while phase II metabolite was formed through alkylation of the parent drug. The study provided valuable insights into the unique metabolic pathways of LMZ in camels under specific experimental conditions. CONCLUSION: The developed method enables the detection and characterization of LMZ and its metabolites in camels. The identified metabolites has the potential to act as marker metabolites for the distinctive detection of LMZ in camel urine to ensure efficient analytical strategies for routine doping control applications.


Asunto(s)
Camelus , Doping en los Deportes , Animales , Doping en los Deportes/prevención & control , Piperazinas/orina , Piperazinas/metabolismo , Espectrometría de Masas/métodos , Detección de Abuso de Sustancias/métodos , Detección de Abuso de Sustancias/veterinaria , Cromatografía Liquida/métodos , Masculino
2.
Rapid Commun Mass Spectrom ; 37(21): e9626, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37799033

RESUMEN

RATIONALE: Trimetazidine and its metabolites are prohibited substances in sports. With a growing number of adverse findings in human athletes, it is crucial to develop doping control strategies that include screening for trimetazidine in animal sports. This study aims to detect and characterize trimetazidine and its metabolites for doping control in camel racing. METHODS: Camel urine and plasma samples were collected from four healthy animals following a single oral dose of trimetazidine. In vitro investigations were conducted using camel liver samples. Liquid-liquid extraction and solid-phase extraction techniques were employed for the extraction of trimetazidine metabolites from plasma and urine matrices. The metabolites were analyzed using a Thermo Orbitrap Exploris LC-MS system with optimized settings to achieve maximum sensitivity and accurate mass measurements. RESULTS: Comprehensive metabolite profiling of trimetazidine in camels revealed the identification of seven phase I and five phase II metabolites. Phase I metabolites were primarily formed through dealkylation, while phase II metabolites were dominated by glucuronide conjugation of demethylated trimetazidine. The findings provided insights into the distinct metabolic pathways and biotransformation patterns of trimetazidine in camels under the experimental conditions. CONCLUSION: The developed method enables detection and characterization of trimetazidine and its metabolites in camels. The identified metabolites have the potential to serve as marker metabolites for trimetazidine abuse in camel racing. This study provides valuable insights into the metabolism of trimetazidine in camels.


Asunto(s)
Doping en los Deportes , Trimetazidina , Animales , Humanos , Trimetazidina/orina , Camelus , Doping en los Deportes/prevención & control , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Detección de Abuso de Sustancias/métodos
3.
Rapid Commun Mass Spectrom ; 37(22): e9633, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37817338

RESUMEN

RATIONALE: The use of selective androgen receptor modulators (SARM) in sports is prohibited by the World Anti-Doping Agency (WADA) due to their potential as performance-enhancing drugs, offering an unfair advantage. LGD-4033 is a SARM known for its similarities to anabolic steroids and can be easily purchased online, leading to increased availability and misuse. Adverse analytical findings have revealed the presence of SARMs in dietary supplements. Although LGD-4033 misuse has been reported in human sports over the years, concerns also arise regarding its illicit use in animal sports, including camel racing. Although various studies have investigated the metabolism of LGD-4033 in humans, horse, and other species, there is limited research specifically dedicated to racing camels. METHODS: This study focuses on the in vitro metabolism of LGD-4033 in homogenized camel liver using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to identify and characterize the metabolites. RESULTS: The findings indicated the presence of 12 phase I metabolites and 1 phase II metabolite. Hydroxylation was responsible for the formation of the main phase I metabolites that were identified. A glucuronic acid conjugate of the parent drug was observed in this study, but no sulfonic acid conjugate was found. The possible chemical structures of these metabolites, along with their fragmentation patterns, were identified using MS. CONCLUSIONS: These findings provide valuable insights into the metabolism of LGD-4033 in camels and aid in the development of effective doping control methods for the detection of SARMs in camel racing.


Asunto(s)
Anabolizantes , Doping en los Deportes , Animales , Humanos , Anabolizantes/análisis , Andrógenos/análisis , Camelus , Doping en los Deportes/prevención & control , Hígado/química , Receptores Androgénicos/metabolismo , Detección de Abuso de Sustancias/métodos
4.
Anal Sci Adv ; 2(9-10): 427-439, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38716441

RESUMEN

Corticoids have found their way into the globe of sports, due to their anti-inflammatory properties, and have often found to be added to dietary supplements for illegally improving the effectiveness of their products. Earlier studies describe the detection of corticoids in several matrices, but this can be an incessant and continuous process as long because the doping practices continue. In this study, we report a technique to verify concurrently 44 of the foremost commonly abused synthetic corticoids (including chiral analogs) in equine plasma supported chiral liquid chromatography-electrospray ionization mass spectrometry. Polysaccharide i-cellulose-5 column was used for chromatographic separation with a gradient mode. The validation studies were also meted out by using equine plasma so as to judge the suitability of the strategy. Detection limits were determined between 0.01 and 0.05 ng/mL and therefore the limit of quantification was between 0.1 and 0.5 ng/mL. Recovery and matrix effect on the analytes was further assessed. Since the developed method was ready to separate the corticoids and to differentiate chiral analogs at very low levels (in picograms), this separation techniques may be employed for the determination (confirmatory analysis) of the corticoids in the forensic and anti-doping application.

5.
J Anal Toxicol ; 44(5): 490-498, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32020176

RESUMEN

Recently, an increased tendency to use various metals has been observed in the sports competition fields. Many of these metals and their organic complexes reportedly have good pharmacologic, therapeutic and performance-enhancement uses; they are banned or recommended as controlled medications in competitive sports. The objective of this research was to determine the concentration of pharmacologically relevant metals in urine samples collected from racehorses at various sport events, develop a method and assess the concentrations of above metals using inductively coupled plasma mass spectrometry (ICP-MS). Seven alkali-alkaline earth metals (lithium, sodium, potassium, magnesium, calcium, strontium and barium) and six heavy metals (chromium, cobalt, copper, zinc, arsenic and selenium) were studied in detail. To compare and confirm the concentrations of these metals, the screening was carried out on the basis of region and sex of the animal. ICP-MS provides extremely high sensitivity that enables the determination of the metals at very low concentration from complex biological matrices. From the research, it is clear that irrespective of sex and region the concentration of metal is very high in some samples, might be accidental or intentional doping to improve sporting performances. This research work is of significant importance in setting threshold values for screening metals in race day samples in order to avoid potential harmful effects on athletes and the depth of malpractices, it can bring to sports.


Asunto(s)
Doping en los Deportes , Caballos/metabolismo , Metales/orina , Sustancias para Mejorar el Rendimiento/orina , Detección de Abuso de Sustancias/métodos , Oligoelementos/orina , Animales , Arsénico , Cromo , Cobalto , Sustancias para Mejorar el Rendimiento/sangre , Potasio , Selenio , Sodio , Espectrofotometría Atómica , Oligoelementos/sangre
6.
Chirality ; 32(3): 314-323, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31925851

RESUMEN

The detection and separation of medetomidine enantiomers from the complex biological matrices poses a great analytical challenge, especially in the field of forensic toxicology and pharmacology. Couple of researchers reported resolution of medetomidine using protein-based chiral columns, but the reported method is quiet challenging and tedious to be employed for routine analysis. This research paper reported a method that enables the enantio-separation of medetomidine by using polysaccharide cellulose chiral column. The use of chiralcel OJ-3R column was found to have the highest potential for successful chiral resolution. Ammonium hydrogen carbonate was the ideal buffer salt for chiral liquid chromatography (LC) with electrospray ionization (ESI)+ mass spectrometry (MS) detection for the successful separation and detection of racemic compound. The method was linear over the range of 0 to 20 ng/mL in equine plasma and the inter-day precisions of levomedetomidine, dexmedetomidine were 1.36% and 1.89%, respectively. The accuracy of levomedetomidine was in the range of 99.25% to 101.57% and that for dexmedetomidine was 99.17% to 100.99%. The limits of quantification for both isomers were 0.2 ng/mL. Recovery and matrix effect on the analytes were also evaluated. Under the optimized conditions, the validated method can be adapted for the identification and resolution of the medetomidine enantiomers in different matrices used for drug testing and analysis.


Asunto(s)
Cromatografía Liquida/métodos , Medetomidina/sangre , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Celulosa/química , Dexmedetomidina/sangre , Dexmedetomidina/aislamiento & purificación , Caballos , Límite de Detección , Medetomidina/química , Medetomidina/aislamiento & purificación , Estereoisomerismo
7.
Chirality ; 31(8): 568-574, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31250489

RESUMEN

Chiral considerations are found to be very much relevant in various aspects of forensic toxicology and pharmacology. In forensics, it has become increasingly important to identify the chirality of doping agents to avoid legal arguments and challenges to the analytical findings. The scope of this study was to develop an liquid chromatography-mass spectrometry (LCMS) method for the enantiomeric separation of typical illicit drugs such as ephedrines (ie, 1S,2R(+)-ephedrine and 1R,2S(-)-ephedrine) and pseudoephedrine (ie, R,R(-)-pseudoephedrine and S,S(+)-pseudoephedrine) by using normal phase chiral liquid chromatography-high-resolution mass spectrometry technique. Results show that the Lux i-amylose-1 stationary phase has very broad and balancing-enantio-recognition properties towards ephedrine analogues, and this immobilized chiral stationary phase may offer a powerful tool for enantio-separation of different types of pharmaceuticals in the normal phase mode. The type of mobile phase and organic modifier used appear to have dramatic influences on separation quality. Since the developed method was able to detect and separate the enantiomers at very low levels (in pico grams), this method opens easy access for the unambiguous identification of these illicit drugs and can be used for the routine screening of the biological samples in the antidoping laboratories.

8.
Steroids ; 140: 77-82, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30296548

RESUMEN

Chirality is one of the most important considerations when controlling doping. The epimeric corticosteroids dexamethasone and betamethasone are significantly potent and long-acting, and they are highly abused in equestrian sports. The scope of this study was to develop a simple and reliable analytical method for simultaneously identifying and separating regularly abused co-eluting corticosteroids in equine urine and plasma. In this paper, we present a simple and rapid method for the chiral separation and identification of epimeric mixtures of dexamethasone and betamethasone using a Thermo Q Exactive high resolution accurate mass spectrometer. The high resolution accurate mass spectrometer system provided extremely high sensitivity, enabling detection of each isomer at a very low concentration from complex biological matrices. Chromatographic separation was performed using amylose and cellulose chiral columns. Reversed phase media showed very good potential for providing a successful chiral resolution in LC-MS analysis. This study also focused on optimizing the mobile phase for elution strength, nature of the organic modifier, additives, and column temperature.


Asunto(s)
Betametasona/sangre , Betametasona/aislamiento & purificación , Análisis Químico de la Sangre/métodos , Cromatografía de Fase Inversa/métodos , Dexametasona/sangre , Dexametasona/aislamiento & purificación , Urinálisis/métodos , Animales , Doping en los Deportes/prevención & control , Caballos , Límite de Detección , Modelos Lineales , Extracción en Fase Sólida , Solventes/química
9.
J Mass Spectrom ; 53(11): 1046-1058, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30098588

RESUMEN

The major challenge in identifying dexamethasone, betamethasone, and paramethasone from a mixture of these corticosteroids is difficulty in achieving an efficient separation. In this study, we aimed to develop an efficient technique to identify these co-eluting isomers based on the mass spectral patterns of them and their corresponding phase II metabolites after electrospray ionization. Fragmentation pathways in tandem mass spectrometry revealed acceptable specificity within the groups of conjugates. The method was validated using individual isomers and mixtures at various compositions. The effects of concentration and collision energies on fragmentation patterns were also studied extensively. Matrix-fortified equine urine and plasma samples were also included so that matrix effects and interferences on fragmentation ratios could be elucidated. Preliminary results using biological samples demonstrated the suitability of this analytical strategy for direct measurement from their fragmentation patterns. Possible fragmentation pathways for each isomer were proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...