Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(12): 120406, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179188

RESUMEN

A quantum two-level system immersed in a sub-Ohmic bath experiences enhanced low-frequency quantum statistical fluctuations which render the nonequilibrium quantum dynamics highly non-Markovian. Upon using the numerically exact time-evolving matrix product operator approach, we investigate the phase diagram of the polarization dynamics. In addition to the known phases of damped coherent oscillatory dynamics and overdamped decay, we identify a new third region in the phase diagram for strong coupling showing an aperiodic behavior. We determine the corresponding phase boundaries. The dynamics of the quantum two-state system herein is not coherent by itself but slaved to the oscillatory bath dynamics.

2.
Photosynth Res ; 144(2): 137-145, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32306173

RESUMEN

We study the impact of underdamped intramolecular vibrational modes on the efficiency of the excitation energy transfer in a dimer in which each state is coupled to its own underdamped vibrational mode and, in addition, to a continuous background of environmental modes. For this, we use the numerically exact hierarchy equation of motion approach. We determine the quantum yield and the transfer time in dependence of the vibronic coupling strength, and in dependence of the damping of the incoherent background. Moreover, we tune the vibrational frequencies out of resonance with the excitonic energy gap. We show that the quantum yield is enhanced by up to 10% when the vibrational frequency of the donor is larger than at the acceptor. The vibronic energy eigenstates of the acceptor acquire then an increased density of states, which leads to a higher occupation probability of the acceptor in thermal equilibrium. We can conclude that an underdamped vibrational mode which is weakly coupled to the dimer fuels a faster transfer of excitation energy, illustrating that long-lived vibrations can, in principle, enhance energy transfer, without involving long-lived electronic coherence.


Asunto(s)
Modelos Químicos , Proteínas/química , Transferencia de Energía , Teoría Cuántica , Vibración
3.
J Phys Chem Lett ; 10(6): 1206-1211, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30802058

RESUMEN

Molecular vibration can influence exciton transfer via either a local (intramolecular) Holstein or a nonlocal (intermolecular) Peierls mode. We show that a strong vibronic coupling to a nonlocal mode dramatically speeds up the transfer by opening an additional transfer channel. This Peierls channel is rooted in the formation of a conical intersection of the excitonic potential energy surfaces. For increasing Peierls coupling, the electronically coherent transfer for weak coupling turns into an incoherent transfer of a localized exciton through the intersection for strong coupling. The interpretation in terms of a conical intersection intuitively explains recent experiments of ultrafast energy transfer in photosynthetic and photovoltaic molecular systems.

4.
J Phys Chem B ; 123(9): 2106-2113, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30731041

RESUMEN

When a hydrophilic solute in water is suddenly turned into a hydrophobic species, for instance, by photoionization, a layer of hydrated water molecules forms around the solute on a time scale of a few picoseconds. We study the dynamic buildup of the hydration shell around a hydrophobic solute on the basis of a time-dependent dielectric continuum model. Information about the solvent is spectroscopically extracted from the relaxation dynamics of a test dipole inside a static Onsager sphere in the nonequilibrium solvent. The growth process is described phenomenologically within two approaches. First, we consider a time-dependent thickness of the hydration layer that grows from zero to a finite value over a finite time. Second, we assume a time-dependent complex permittivity within a finite layer region around the Onsager sphere. The layer is modeled as a continuous dielectric with a much slower fluctuation dynamics. We find a time-dependent frequency shift down to the blue of the resonant absorption of the dipole, together with a dynamically decreasing line width, as compared to bulk water. The blue shift reflects the work performed against the hydrogen-bonded network of the bulk solvent and is a directly measurable quantity. Our results are in agreement with an experiment on the hydrophobic solvation of iodine in water.

5.
Phys Rev E ; 94(5-1): 052146, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27967015

RESUMEN

We show that strong non-Markovian effects can be revealed by the steady-state two-dimensional (2D) photon echo spectra at asymptotic waiting times. For this, we use a simple dimer toy model that is strongly coupled to a harmonic bath with parameters typical for photoactive biomolecules. We calculate the 2D photon echo spectra employing both the numerically exact hierarchy equation of motion and the quasiadiabatic path integral approach and compare these results with approximate results from a time-nonlocal quantum master equation approach. While the latter correctly reproduces the exact population dynamics at long times, it fails at the same time to correctly describe the 2D photon echo spectra at long waiting times. The differences show that non-Markovian effects are much more important for the steady-state 2D photon echoes than for the equilibrium populations. Thus, accurate theoretical descriptions of the energy transfer dynamics in biomolecular complexes have to be based on numerically exact simulations of the environmental fluctuations when nonlinear response functions are analyzed.

6.
J Phys Chem Lett ; 7(11): 2015-9, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27176818

RESUMEN

Commonly, nanosystems are characterized by their response to time-dependent external fields in the presence of inevitable environmental fluctuations. The direct impact of the external driving on the environment is generally neglected. While this approach is satisfactory for macroscopic systems, on the nanoscale, an interaction of external fields with the environment is often unavoidable on principle. We extend the standard linear response theory of quantum dissipative systems to strongly driven baths. Significant modifications are found for two paradigm examples. First, we evaluate the polarizability of a molecule immersed in a strongly polarizable medium that responds to terahertz radiation. We find an increase of the molecular polarizability by about 30%. Second, we determine the response of a semiconductor quantum dot in close proximity to a metallic nanoparticle. Both are placed in a polarizable medium and exposed to electromagnetic irradiation. We show that the response of the quantum dot is qualitatively modified by the driven nanoparticle, including the generation of an additional channel of stimulated emission.

7.
Artículo en Inglés | MEDLINE | ID: mdl-26565273

RESUMEN

We combine the coherent modified Redfield theory (CMRT) with the equation of motion-phase matching approach (PMA) to calculate two-dimensional photon-echo spectra for photoactive molecular complexes with an intermediate strength of the coupling to their environment. Both techniques are highly efficient, yet they involve approximations at different levels. By explicitly comparing with the numerically exact quasiadiabatic path integral approach, we show for the Fenna-Matthews-Olson complex that the CMRT describes the decay rates in the population dynamics well, but final stationary populations and the oscillation frequencies differ slightly. In addition, we use the combined CMRT+PMA to calculate two-dimensional photon-echo spectra for a simple dimer model. We find excellent agreement with the exact path integral calculations at short waiting times where the dynamics is still coherent. For long waiting times, differences occur due to different final stationary states, specifically for strong system-bath coupling. For weak to intermediate system-bath couplings, which is most important for natural photosynthetic complexes, the combined CMRT+PMA gives reasonable results with acceptable computational efforts.


Asunto(s)
Proteínas Bacterianas/química , Complejos de Proteína Captadores de Luz/química , Modelos Moleculares , Análisis Espectral , Chlorobium , Simulación por Computador , Dimerización , Movimiento (Física) , Fotones , Teoría Cuántica
8.
J Phys Chem B ; 119(36): 12017-27, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26301382

RESUMEN

We have performed broad-band two-dimensional (2D) electronic spectroscopy of light-harvesting complex II (LHCII) at ambient temperature. We found that electronic dephasing occurs within ∼60 fs and inhomogeneous broadening is approximately 120 cm(-1). A three-dimensional global fit analysis allows us to identify several time scales in the dynamics of the 2D spectra ranging from 100 fs to ∼10 ps and to uncover the energy-transfer pathways in LHCII. In particular, the energy transfer between the chlorophyll b and chlorophyll a pools occurs within ∼1.1 ps. Retrieved 2D decay-associated spectra also uncover the spectral positions of corresponding diagonal peaks in the 2D spectra. Residuals in the decay traces exhibit periodic modulations with different oscillation periods. However, only one of them can be associated with the excitonic cross-peaks in the 2D spectrum, while the remaining ones are presumably of vibrational origin. For the interpretation of the spectroscopic data, we have applied a refined exciton model for LHCII. It reproduces the linear absorption, circular dichroism, and 2D spectra at different waiting times. Several components of the energy transport are revealed from theoretical simulations that agree well with the experimental observations.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Modelos Moleculares , Análisis Espectral , Temperatura , Electrones , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Conformación Proteica , Spinacia oleracea/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...