Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Biology (Basel) ; 12(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36829456

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of coronavirus disease 19 (COVID-19). COVID-19 can manifest with a heterogenous spectrum of disease severity, from mild upper airways infection to severe interstitial pneumonia and devastating acute respiratory distress syndrome (ARDS). SARS-CoV-2 infection may induce an over activation of the immune system and the release of high concentrations of pro-inflammatory cytokines, leading to a "cytokine storm", a recognized pathogenetic mechanism in the genesis of SARS-CoV-2-induced lung disease. This overproduction of inflammatory cytokines has been recognized as a poor prognostic factor, since it can lead to disease progression, organ failure, ARDS and death. Moreover, the immune system shows dysregulated activity, particularly through activated macrophages and T-helper cells and in the co-occurrent exhaustion of lymphocytes. We carried out a non-systematic literature review aimed at providing an overview of the current knowledge on the pathologic mechanisms played by the immune system and the inflammation in the genesis of SARS-CoV-2-induced lung disease. An overview on potential treatments for this harmful condition and for contrasting the "cytokine storm" has also been presented. Finally, a look at the experimented experimental vaccines against SARS-CoV-2 has been included.

2.
Eur Respir J ; 61(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36356972

RESUMEN

BACKGROUND: Dysregulated systemic inflammation is the primary driver of mortality in severe coronavirus disease 2019 (COVID-19) pneumonia. Current guidelines favour a 7-10-day course of any glucocorticoid equivalent to dexamethasone 6 mg daily. A comparative randomised controlled trial (RCT) with a higher dose and a longer duration of intervention was lacking. METHODS: We conducted a multicentre, open-label RCT to investigate methylprednisolone 80 mg as a continuous daily infusion for 8 days followed by slow tapering versus dexamethasone 6 mg once daily for up to 10 days in adult patients with COVID-19 pneumonia requiring oxygen or noninvasive respiratory support. The primary outcome was reduction in 28-day mortality. Secondary outcomes were mechanical ventilation-free days at 28 days, need for intensive care unit (ICU) referral, length of hospitalisation, need for tracheostomy, and changes in C-reactive protein (CRP) levels, arterial oxygen tension/inspiratory oxygen fraction (P aO2 /F IO2 ) ratio and World Health Organization Clinical Progression Scale at days 3, 7 and 14. RESULTS: 677 randomised patients were included. Findings are reported as methylprednisolone (n=337) versus dexamethasone (n=340). By day 28, there were no significant differences in mortality (35 (10.4%) versus 41 (12.1%); p=0.49) nor in median mechanical ventilation-free days (median (interquartile range (IQR)) 23 (14) versus 24 (16) days; p=0.49). ICU referral was necessary in 41 (12.2%) versus 45 (13.2%) (p=0.68) and tracheostomy in 8 (2.4%) versus 9 (2.6%) (p=0.82). Survivors in the methylprednisolone group required a longer median (IQR) hospitalisation (15 (11) versus 14 (11) days; p=0.005) and experienced an improvement in CRP levels, but not in P aO2 /F IO2 ratio, at days 7 and 14. There were no differences in disease progression at the prespecified time-points. CONCLUSION: Prolonged, higher dose methylprednisolone did not reduce mortality at 28 days compared with conventional dexamethasone in COVID-19 pneumonia.


Asunto(s)
COVID-19 , Adulto , Humanos , Metilprednisolona , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Dexametasona , Oxígeno , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...