Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 159: 213822, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442461

RESUMEN

Certain aggressive cancers, such as triple-negative breast cancer (TNBC), heavily bank on glutamine for their proliferation and survival. In this context, TNBC functions as a "glutamine trap," extracting circulating glutamine at a rate surpassing that of any other organ. Moreover, the overexpression of Alanine, Serine, Cysteine Transporter 2 (ASCT2), a key player in glutamine uptake, further underscores the significance of targeted therapy to enhance TNBC treatment. This led to the exploration of a novel approach involving hydrophobized Pluronic-based mixed micelles achieved through the use of docosahexaenoic acid and stapled with glutamine for displaying inherent ASCT2 targeting ability-a formulation termed LPT G-MM. LPT G-MM exhibited optimal characteristics, including a size of 163.66 ± 10.34 nm, a polydispersity index of 0.237 ± 0.083, and an enhanced drug loading capacity of approximately 15 %. Transmission electron microscopy validated the spherical shape of these micelles. In vitro release studies demonstrated drug release in a sustained manner without the risk of hemolysis. Importantly, LPT G-MM displayed heightened cellular uptake, increased cytotoxicity, a lower IC50 value, elevated reactive oxygen species, induced mitochondrial membrane depolarization, and a greater apoptosis index in TNBC cell lines compared to free LPT. The pharmacokinetic profile of LPT G-MM revealed a substantial rise in half-life (t1/2) by approximately 1.48-fold and an elevation in the area under the curve [AUC(0→∞)] by approximately 1.19-fold. Moreover, there was a significant reduction in the percentage of tumor volume by approximately 7.26-fold, along with decreased serum toxicity markers compared to free LPT. In summary, LPT G-MM demonstrated promising potential in boosting payload capacities and targeting specificity in the context of TNBC treatment.


Asunto(s)
Micelas , Neoplasias de la Mama Triple Negativas , Humanos , Lapatinib/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Glutamina/uso terapéutico , Línea Celular Tumoral , Apoptosis
3.
Int J Biol Macromol ; 252: 126565, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37640185

RESUMEN

This study investigates the impact of charge and chain length of bile salts in the bilosomes on the oral bioavailability of insulin (IN) by examining their uptake via the apical sodium-dependent bile acid transporter (ASBT). Deoxycholic acid bile salt was conjugated with different amino acids to create conjugates with varying charge and chain length, which were then embedded in liposomes. The resulting bilosomes had a particle size <400 nm, a PDI of 0.121 ± 0.03, and an entrapment efficiency of ∼70 %, while maintaining the chemical and conformational integrity of the loaded IN. Bilosomes also provided superior protection in biological fluids without compromising their biophysical attributes. Quantitative studies using the Caco-2 cell line demonstrated that anionic bilosomes were taken up more efficiently through ASBT than cationic bilosomes with 4- and 1.3-fold increase, respectively. Ex-vivo permeability studies corroborated these findings. In-vivo efficacy studies revealed a 1.6-fold increase in the AUC of IN with bilosomes compared to subcutaneous IN. The developed bilosomes were able to reduce blood glucose levels by ∼65 % at 6 h, with a cumulative hypoglycemic value of 35 % and a BAR of ∼30 %. These results suggest that ASBT can be a suitable target for improving the oral bioavailability of bilosomes containing IN.


Asunto(s)
Insulina , Liposomas , Humanos , Disponibilidad Biológica , Células CACO-2 , Liposomas/química , Ácidos y Sales Biliares
4.
Int J Pharm ; 622: 121852, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35618179

RESUMEN

The present investigation demonstrates the preparation of solid self nanoemulsfying drug delivery system (sSNEDDS) to enhance stability and bioavailability of Erlotinib (ERL) via the oral route. Capmul®MCM EP (CPM EP, oil), Cremophor® RH 40 (CMR RH 40, surfactant), and LBF CS (LBF CS, cosurfactant) were chosen as chief components for preparing Liquids SNEDDS (L-ERL-SNEDDS) based on solubility and emulsion forming ability. Pseudo ternary phase diagram and constrained mixture designs were applied to identify the self-emulsifying area and it was found that CPM EP, CMR RH 40, and LBF CS in the ratio of 59:11:30 showed optimized particle size (110.08 nm), with narrow PDI (0.114) and high ERL loading capacity (14.31 mg/g). Adsorption method was implemented for solidification of L-ERL-SNEDDS. Among various solid carriers were studied, Aerosil® 200 (A200) was finalized based on free flowing property and reconstitution ability. DSC and XRD studies revealed that crystallinity of drug was reduced in developed system. The developed formulation (named as, A200-ERL-sSNEDDS) showed increased cytotoxicity and apoptosis in PANC-1 and MIA PaCa-2 cells. Pharmacokinetic studies revealed ∼2.2 times increase in AUC0-∞values in case of A200-ERL-sSNEDDS as compared to free ERL. Thus current strategy can be extrapolated for delivering of poorly soluble drugs via oral route.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Administración Oral , Animales , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos/métodos , Emulsiones , Clorhidrato de Erlotinib , Sistema de Administración de Fármacos con Nanopartículas , Tamaño de la Partícula , Ratas , Ratas Wistar , Solubilidad
5.
Drug Deliv Transl Res ; 12(3): 562-576, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33774776

RESUMEN

The present investigation demonstrates the development of crosslinked ß-cyclodextrin nanoparticles (ß-CD NPs) for enhancing the therapeutic efficacy of docetaxel (DTX) against breast cancer. Initially, a partial inclusion complex between ß-CD and polypropylene glycol (PPG) was formed to induce self-assembly. This was followed by crosslinking of ß-CDs using epichlorohydrin (EPI) and removal (by solubilization) of PPG to yield uniform ß-CD NPs. The formed particles were used for loading DTX to form DTX ß-CD NPs. The resultant DTX ß-CD NPs exhibited particle size of 223.36 ± 17.73 nm with polydispersity index (PDI) of 0.13 ± 0.09 and showed entrapment efficiency of 54.53 ± 2%. Increased cell uptake (~5-fold), cytotoxicity (~3.3-fold), and apoptosis were observed in MDA-MB-231 cells when treated with DTX ß-CD NPs in comparison to free DTX. Moreover, pharmacokinetic evaluation of DTX ß-CD NPs revealed ~2 and ~5-fold increase in AUC0-∞ and mean residence time (MRT) of DTX when compared to Docepar®. Further, the anti-tumor activity using DMBA-induced cancer model showed that DTX ß-CD NPs were capable of reducing the tumor volume to ~40%, whereas Docepar® was able to reduce tumor volume till ~80%. Finally, the toxicity evaluation of DTX ß-CD NPs revealed no short-term nephrotoxicity and was confirmed by estimating the levels of biomarkers and histopathology of the organs. Thus, the proposed formulation strategy can yield uniformly formed ß-CD NPs which can be effectively utilized for improving the therapeutic efficacy of DTX.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , beta-Ciclodextrinas , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/farmacocinética , Femenino , Humanos
6.
Int J Biol Macromol ; 167: 491-501, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33279562

RESUMEN

In present study, we have developed W/O/W microemulsion (ME) containing piperine (PiP) as a permeation enhancer and albumin (Alb) serving as a stabilizer for oral delivery of insulin (INS). The resultant formulation, ME(INS)-PiP-Alb exhibited droplet size of 3.35 ± 0.25 µm along with polydispersity index (PDI) of 0.30 ± 0.10. The formulation process employed for developing ME(INS)-PiP-Alb showed no effect on INS's chemical and conformational stability. Further, ME(INS)-PiP-Alb was able to maintain desired attributes (size & PDI) along with INS stability in simulated gastrointestinal fluids. Also, ME(INS)-PiP-Alb rendered higher protection to INS in presence of pepsin and trypsin than ME(INS)-PiP. In qualitative Caco-2 cell uptake, INS loaded ME's showed higher uptake in comparison to free INS. Whereas, in permeability studies ME(INS)-PiP-Alb showed ~4 and ~1.5-fold enhanced permeation than free INS and ME(INS) without PiP groups respectively. Also, in ex vivo intestinal permeation studies similar fold increment in permeation were observed. Interestingly, the pharmacodynamic studies revealed ~3.2-fold higher hypoglycemic effect in animals treated with ME(INS)-PiP-Alb in comparison to ME(INS)-PiP. Similarly, the pharmacokinetic studies also revealed ~1.6 fold higher AUC for ME(INS)-PiP-Alb than ME(INS)-PiP. Thus, in vivo results suggested that Alb as a stabilizer can assist in improving the hypoglycemic effect of the developed ME with PiP. Hence, this strategy can also be extrapolated for delivering other bio-macromolecules orally.


Asunto(s)
Albúminas/química , Alcaloides/química , Benzodioxoles/química , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Piperidinas/química , Alcamidas Poliinsaturadas/química , Administración Oral , Animales , Glucemia/efectos de los fármacos , Células CACO-2 , Estabilidad de Medicamentos , Emulsiones , Cabras , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Insulina/química , Insulina/farmacocinética , Masculino , Tamaño de la Partícula , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...