Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(49): e2307371120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38032933

RESUMEN

There has been considerable progress in the development of computational methods for designing protein-protein interactions, but engineering high-affinity binders without extensive screening and maturation remains challenging. Here, we test a protein design pipeline that uses iterative rounds of deep learning (DL)-based structure prediction (AlphaFold2) and sequence optimization (ProteinMPNN) to design autoinhibitory domains (AiDs) for a PD-L1 antagonist. With the goal of creating an anticancer agent that is inactive until reaching the tumor environment, we sought to create autoinhibited (or masked) forms of the PD-L1 antagonist that can be unmasked by tumor-enriched proteases. Twenty-three de novo designed AiDs, varying in length and topology, were fused to the antagonist with a protease-sensitive linker, and binding to PD-L1 was measured with and without protease treatment. Nine of the fusion proteins demonstrated conditional binding to PD-L1, and the top-performing AiDs were selected for further characterization as single-domain proteins. Without any experimental affinity maturation, four of the AiDs bind to the PD-L1 antagonist with equilibrium dissociation constants (KDs) below 150 nM, with the lowest KD equal to 0.9 nM. Our study demonstrates that DL-based protein modeling can be used to rapidly generate high-affinity protein binders.


Asunto(s)
Antígeno B7-H1 , Aprendizaje Profundo , Neoplasias , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Péptido Hidrolasas , Proteínas
2.
J Am Chem Soc ; 145(34): 18773-18777, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37582279

RESUMEN

RNA molecules undergo conformational transitions in response to cellular and environmental stimuli. Site-specific protonation, a fundamental chemical property, can alter the conformational landscape of RNA to regulate their functions. However, characterizing protonation-coupled RNA conformational ensembles on a large scale remains challenging. Here, we present pH-differential mutational profiling (PD-MaP) with dimethyl sulfate probing for high-throughput detection of protonation-coupled conformational ensembles in RNA. We demonstrated this approach on microRNA-21 precursor (pre-miR-21) and recapitulated a previously discovered A+-G-coupled conformational ensemble. Additionally, we identified a secondary protonation event involving an A+-C mismatch. We validated the occurrence of both protonation-coupled ensembles in pre-miR-21 using NMR relaxation dispersion spectroscopy. Furthermore, the application of PD-MaP on a library of well-annotated human primary microRNAs uncovered widespread protonation-coupled conformational ensembles, suggesting their potentially broad functions in biology.


Asunto(s)
Conformación de Ácido Nucleico , Concentración de Iones de Hidrógeno , MicroARNs/química , Espectroscopía de Resonancia Magnética
3.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205527

RESUMEN

There has been considerable progress in the development of computational methods for designing protein-protein interactions, but engineering high-affinity binders without extensive screening and maturation remains challenging. Here, we test a protein design pipeline that uses iterative rounds of deep learning (DL)-based structure prediction (AlphaFold2) and sequence optimization (ProteinMPNN) to design autoinhibitory domains (AiDs) for a PD-L1 antagonist. Inspired by recent advances in therapeutic design, we sought to create autoinhibited (or masked) forms of the antagonist that can be conditionally activated by proteases. Twenty-three de novo designed AiDs, varying in length and topology, were fused to the antagonist with a protease sensitive linker, and binding to PD-L1 was tested with and without protease treatment. Nine of the fusion proteins demonstrated conditional binding to PD-L1 and the top performing AiDs were selected for further characterization as single domain proteins. Without any experimental affinity maturation, four of the AiDs bind to the PD-L1 antagonist with equilibrium dissociation constants (KDs) below 150 nM, with the lowest KD equal to 0.9 nM. Our study demonstrates that DL-based protein modeling can be used to rapidly generate high affinity protein binders.

4.
Protein Sci ; 32(4): e4622, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36906819

RESUMEN

ß-lactam antibiotics target DD-transpeptidases, enzymes that perform the last step of bacterial cell-wall synthesis. To block the antimicrobial activity of these antibiotics, bacteria have evolved lactamases that render them inert. Among these, TEM-1, a class A lactamase, has been extensively studied. In 2004, Horn et al. described a novel allosteric TEM-1 inhibitor, FTA, that binds distant from the TEM-1 orthosteric (penicillin-binding) pocket. TEM-1 has subsequently become a model for the study of allostery. In the present work, we perform molecular dynamics simulations of FTA-bound and FTA-absent TEM-1, totaling ~3 µS, that provide new insight into TEM-1 inhibition. In one of the simulations, bound FTA assumed a conformation different than that observed crystallographically. We provide evidence that the alternate pose is physiologically plausible and describe how it impacts our understanding of TEM-1 allostery.


Asunto(s)
Simulación de Dinámica Molecular , beta-Lactamasas , beta-Lactamasas/química , Antibacterianos/farmacología , Bacterias/metabolismo , Penicilinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...