Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Nat Aging ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143319

RESUMEN

Infections have been associated with the incidence of Alzheimer disease and related dementias, but the mechanisms responsible for these associations remain unclear. Using a multicohort approach, we found that influenza, viral, respiratory, and skin and subcutaneous infections were associated with increased long-term dementia risk. These infections were also associated with region-specific brain volume loss, most commonly in the temporal lobe. We identified 260 out of 942 immunologically relevant proteins in plasma that were differentially expressed in individuals with an infection history. Of the infection-related proteins, 35 predicted volumetric changes in brain regions vulnerable to infection-specific atrophy. Several of these proteins, including PIK3CG, PACSIN2, and PRKCB, were related to cognitive decline and plasma biomarkers of dementia (Aß42/40, GFAP, NfL, pTau-181). Genetic variants that influenced expression of immunologically relevant infection-related proteins, including ITGB6 and TLR5, predicted brain volume loss. Our findings support the role of infections in dementia risk and identify molecular mediators by which infections may contribute to neurodegeneration.

2.
NPJ Parkinsons Dis ; 10(1): 145, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103393

RESUMEN

Activation of the NLRP3 inflammasome has been implicated in Parkinson's disease (PD) based on in vitro and in vivo studies. Clinical trials targeting the NLRP3 inflammasome in PD are ongoing. However, the evidence supporting NLRP3's involvement in PD from human genetics data is limited. We analyzed common and rare variants in NLRP3 inflammasome-related genes in PD cohorts, performed pathway-specific polygenic risk score (PRS) analyses, and studied causal associations using Mendelian randomization (MR) with the NLRP3 components and the cytokines IL-1ß and IL-18. Our findings showed no associations of common or rare variants, nor of the pathway PRS with PD. MR suggests that altering the expression of the NLRP3 inflammasome, IL-1ß, or IL-18, does not affect PD risk or progression. Therefore, our results do not support a role for the NLRP3 inflammasome in PD pathogenesis or as a target for drug development.

3.
Mov Disord ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076159

RESUMEN

BACKGROUND: Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at a global scale. OBJECTIVE: To identify the multi-ancestry spectrum of monogenic PD. METHODS: The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's Monogenic Network took a different approach by targeting PD centers underrepresented or not yet represented in the medical literature. RESULTS: In this article, we describe combining both efforts in a merger project resulting in a global monogenic PD cohort with the buildup of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expressivity of monogenic PD. CONCLUSIONS: This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Alzheimers Dement ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39030740

RESUMEN

The under-representation of non-European cohorts in neurodegenerative disease genome-wide association studies (GWAS) hampers precision medicine efforts. Despite the inherent genetic and phenotypic diversity in these diseases, GWAS research consistently exhibits a disproportionate emphasis on participants of European ancestry. This study reviews GWAS up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. We conducted a systematic review of GWAS results and publications up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. Rigorous article inclusion and quality assessment methods were employed. Of 123 neurodegenerative disease (NDD) GWAS reviewed, 82% predominantly featured European ancestry participants. A single European study identified over 90 risk loci, compared to a total of 50 novel loci in identified in all non-European or multi-ancestry studies. Notably, only six of the loci have been replicated. The significant under-representation of non-European ancestries in NDD GWAS hinders comprehensive genetic understanding. Prioritizing genomic diversity in future research is crucial for advancing NDD therapies and understanding. HIGHLIGHTS: Eighty-two percent of neurodegenerative genome-wide association studies (GWAS) focus on Europeans. Only 6 of 50 novel neurodegenerative disease (NDD) genetic loci have been replicated. Lack of diversity significantly hampers understanding of NDDs. Increasing diversity in NDD genetic research is urgently required. New initiatives are aiming to enhance diversity in NDD research.

5.
NPJ Parkinsons Dis ; 10(1): 136, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060285

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder with a significant risk proportion driven by genetics. While much progress has been made, most of the heritability remains unknown. This is in-part because previous genetic studies have focused on the contribution of single nucleotide variants. More complex forms of variation, such as structural variants and tandem repeats, are already associated with several synucleinopathies. However, because more sophisticated sequencing methods are usually required to detect these regions, little is understood regarding their contribution to PD. One example is a polymorphic CT-rich region in intron 4 of the SNCA gene. This haplotype has been suggested to be associated with risk of Lewy Body (LB) pathology in Alzheimer's Disease and SNCA gene expression, but is yet to be investigated in PD. Here, we attempt to resolve this CT-rich haplotype and investigate its role in PD. We performed targeted PacBio HiFi sequencing of the region in 1375 PD cases and 959 controls. We replicate the previously reported associations and a novel association between two PD risk SNVs (rs356182 and rs5019538) and haplotype 4, the largest haplotype. Through quantitative trait locus analyzes we identify a significant haplotype 4 association with alternative CAGE transcriptional start site usage, not leading to significant differential SNCA gene expression in post-mortem frontal cortex brain tissue. Therefore, disease association in this locus might not be biologically driven by this CT-rich repeat region. Our data demonstrates the complexity of this SNCA region and highlights that further follow up functional studies are warranted.

6.
medRxiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853922

RESUMEN

Although large-scale genetic association studies have proven opportunistic for the delineation of neurodegenerative disease processes, we still lack a full understanding of the pathological mechanisms of these diseases, resulting in few appropriate treatment options and diagnostic challenges. To mitigate these gaps, the Neurodegenerative Disease Knowledge Portal (NDKP) was created as an open-science initiative with the aim to aggregate, enable analysis, and display all available genomic datasets of neurodegenerative disease, while protecting the integrity and confidentiality of the underlying datasets. The portal contains 218 genomic datasets, including genotyping and sequencing studies, of individuals across ten different phenotypic groups, including neurological conditions such as Alzheimer's disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson's disease. In addition to securely hosting large genomic datasets, the NDKP provides accessible workflows and tools to effectively utilize the datasets and assist in the facilitation of customized genomic analyses. Here, we summarize the genomic datasets currently included within the portal, the bioinformatics processing of the datasets, and the variety of phenotypes captured. We also present example use-cases of the various user interfaces and integrated analytic tools to demonstrate their extensive utility in enabling the extraction of high-quality results at the source, for both genomics experts and those in other disciplines. Overall, the NDKP promotes open-science and collaboration, maximizing the potential for discovery from the large-scale datasets researchers and consortia are expending immense resources to produce and resulting in reproducible conclusions to improve diagnostic and therapeutic care for neurodegenerative disease patients.

7.
NPJ Parkinsons Dis ; 10(1): 108, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789445

RESUMEN

A biallelic (AAGGG) expansion in the poly(A) tail of an AluSx3 transposable element within the gene RFC1 is a frequent cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), and more recently, has been reported as a rare cause of Parkinson's disease (PD) in the Finnish population. Here, we investigate the prevalence of RFC1 (AAGGG) expansions in PD patients of non-Finnish European ancestry in 1609 individuals from the Parkinson's Progression Markers Initiative study. We identified four PD patients carrying the biallelic RFC1 (AAGGG) expansion and did not identify any carriers in controls.

8.
Patterns (N Y) ; 5(3): 100945, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38487808

RESUMEN

While machine learning (ML) research has recently grown more in popularity, its application in the omics domain is constrained by access to sufficiently large, high-quality datasets needed to train ML models. Federated learning (FL) represents an opportunity to enable collaborative curation of such datasets among participating institutions. We compare the simulated performance of several models trained using FL against classically trained ML models on the task of multi-omics Parkinson's disease prediction. We find that FL model performance tracks centrally trained ML models, where the most performant FL model achieves an AUC-PR of 0.876 ± 0.009, 0.014 ± 0.003 less than its centrally trained variation. We also determine that the dispersion of samples within a federation plays a meaningful role in model performance. Our study implements several open-source FL frameworks and aims to highlight some of the challenges and opportunities when applying these collaborative methods in multi-omics studies.

9.
medRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38529492

RESUMEN

Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's (GP2) Monogenic Network took a different approach by targeting PD centers not yet represented in the medical literature. Here, we describe combining both efforts in a "merger project" resulting in a global monogenic PD cohort with build-up of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expression of monogenic PD. This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results.

10.
Neuron ; 112(5): 694-697, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38387456

RESUMEN

The iDA Project (iPSCs to Study Diversity in Alzheimer's and Alzheimer's Disease-related Dementias) is generating 200 induced pluripotent stem cell lines from Alzheimer's Disease Neuroimaging Initiative participants. These lines are sex balanced, include common APOE genotypes, span disease stages, and are ancestrally diverse. Cell lines and characterization data will be shared openly.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de Alzheimer/genética , Neuroimagen/métodos , Línea Celular
11.
Mov Disord ; 39(4): 728-733, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38390630

RESUMEN

BACKGROUND: Rapid eye movement (REM) sleep behavior disorder (RBD) is an early feature of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Damaging coding variants in Glucocerebrosidase (GBA1) are a genetic risk factor for RBD. Recently, a population-specific non-coding risk variant (rs3115534) was found to be associated with PD risk and earlier onset in individuals of African ancestry. OBJECTIVES: We aimed to investigate whether the GBA1 rs3115534 PD risk variant is associated with RBD in persons with PD. METHODS: We studied 709 persons with PD and 776 neurologically healthy controls from Nigeria. All DNA samples were genotyped and imputed, and the GBA1 rs3115534 risk variant was extracted. The RBD screening questionnaire (RBDSQ) was used to assess symptoms of possible RBD. RESULTS: RBD was present in 200 PD (28.2%) and 51 (6.6%) controls. We identified that the non-coding GBA1 rs3115534 risk variant is associated with possible RBD in individuals of Nigerian origin (ß, 0.3640; standard error [SE], 0.103, P = 4.093e-04), as well as in all samples after adjusting for PD status (ß, 0.2542; SE, 0.108; P = 0.019) suggesting that although non-coding, this variant may have the same downstream consequences as GBA1 coding variants. CONCLUSIONS: Our results indicate that the non-coding GBA1 rs3115534 risk variant is associated with an increasing number of RBD symptoms in persons with PD of Nigerian origin. Further research is needed to assess if this variant is also associated with polysomnography-defined RBD and with RBD symptoms in DLB. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Pueblo de África Occidental , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Genotipo , Glucosilceramidasa/genética , Nigeria , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/complicaciones , Polimorfismo de Nucleótido Simple , Trastorno de la Conducta del Sueño REM/genética , Adulto Joven , Adulto
12.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260595

RESUMEN

Importance: The under-representation of participants with non-European ancestry in genome-wide association studies (GWAS) is a critical issue that has significant implications, including hindering the progress of precision medicine initiatives. This issue is particularly significant in the context of neurodegenerative diseases (NDDs), where current therapeutic approaches have shown limited success. Addressing this under-representation is crucial to harnessing the full potential of genomic medicine in underserved communities and improving outcomes for NDD patients. Objective: Our primary objective was to assess the representation of non-European ancestry participants in genetic discovery efforts related to NDDs. We aimed to quantify the extent of inclusion of diverse ancestry groups in NDD studies and determine the number of associated loci identified in more inclusive studies. Specifically, we sought to highlight the disparities in research efforts and outcomes between studies predominantly involving European ancestry participants and those deliberately targeting non-European or multi-ancestry populations across NDDs. Evidence Review: We conducted a systematic review utilizing existing GWAS results and publications to assess the inclusion of diverse ancestry groups in neurodegeneration and neurogenetics studies. Our search encompassed studies published up to the end of 2022, with a focus on identifying research that deliberately included non-European or multi-ancestry cohorts. We employed rigorous methods for the inclusion of identified articles and quality assessment. Findings: Our review identified a total of 123 NDD GWAS. Strikingly, 82% of these studies predominantly featured participants of European ancestry. Endeavors specifically targeting non-European or multi-ancestry populations across NDDs identified only 52 risk loci. This contrasts with predominantly European studies, which reported over 90 risk loci for a single disease. Encouragingly, over 65% of these discoveries occurred in 2020 or later, indicating a recent increase in studies deliberately including non-European cohorts. Conclusions and relevance: Our findings underscore the pressing need for increased diversity in neurodegenerative research. The significant under-representation of non-European ancestry participants in NDD GWAS limits our understanding of the genetic underpinnings of these diseases. To advance the field of neurodegenerative research and develop more effective therapies, it is imperative that future investigations prioritize and harness the genomic diversity present within and across global populations.

13.
Am J Hum Genet ; 111(1): 150-164, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181731

RESUMEN

Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Recursos Comunitarios , Multiómica , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Análisis de la Aleatorización Mendeliana
15.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38277467

RESUMEN

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Péptidos , Proteómica
16.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986893

RESUMEN

While machine learning (ML) research has recently grown more in popularity, its application in the omics domain is constrained by access to sufficiently large, high-quality datasets needed to train ML models. Federated Learning (FL) represents an opportunity to enable collaborative curation of such datasets among participating institutions. We compare the simulated performance of several models trained using FL against classically trained ML models on the task of multi-omics Parkinson's Disease prediction. We find that FL model performance tracks centrally trained ML models, where the most performant FL model achieves an AUC-PR of 0.876 ± 0.009, 0.014 ± 0.003 less than its centrally trained variation. We also determine that the dispersion of samples within a federation plays a meaningful role in model performance. Our study implements several open source FL frameworks and aims to highlight some of the challenges and opportunities when applying these collaborative methods in multi-omics studies.

17.
Nat Genet ; 56(1): 27-36, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38155330

RESUMEN

Although over 90 independent risk variants have been identified for Parkinson's disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson's disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson , Humanos , Estudio de Asociación del Genoma Completo/métodos , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Ubiquitina Tiolesterasa/genética
18.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38076854

RESUMEN

Background: Damaging coding variants in GBA1 are a genetic risk factor for rapid eye movement sleep behavior disorder (RBD), which is a known early feature of synucleinopathies. Recently, a population-specific non-coding variant (rs3115534) was found to be associated with PD risk and earlier disease onset in individuals of African ancestry. Objectives: To investigate whether the GBA1 rs3115534 PD risk variant is associated with RBD. Methods: We studied 709 persons with PD and 776 neurologically healthy controls from Nigeria. The GBA1 rs3115534 risk variant status was imputed from previous genotyping for all. Symptoms of RBD were assessed with the RBD screening questionnaire (RBDSQ). Results: The non-coding GBA1 rs3115534 risk variant is associated with possible RBD in individuals of Nigerian origin (Beta = 0.3640, SE = 0.103, P =4.093e-04), as well as after adjusting for PD status (Beta = 0.2542, SE = 0.108, P = 0.019) suggesting that this variant may have the same downstream consequences as GBA1 coding variants. Conclusions: We show that the non-coding GBA1 rs3115534 risk variant is associated with increased RBD symptomatology in Nigerians with PD. Further research is required to assess association with polysomnography-defined RBD.

19.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986827

RESUMEN

The relationship between sleep disorders and neurodegeneration is complex and multi-faceted. Using over one million electronic health records (EHRs) from Wales, UK, and Finland, we mined biobank data to identify the relationships between sleep disorders and the subsequent manifestation of neurodegenerative diseases (NDDs) later in life. We then examined how these sleep disorders' severity impacts neurodegeneration risk. Additionally, we investigated how sleep attributed risk may compensate for the lack of genetic risk factors (i.e. a lower polygenic risk score) in NDD manifestation. We found that sleep disorders such as sleep apnea were associated with the risk of Alzheimer's disease (AD), amyotrophic lateral sclerosis, dementia, Parkinson's disease (PD), and vascular dementia in three national scale biobanks, with hazard ratios (HRs) ranging from 1.31 for PD to 5.11 for dementia. These sleep disorders imparted significant risk up to 15 years before the onset of an NDD. Cumulative number of sleep disorders in the EHRs were associated with a higher risk of neurodegeneration for dementia and vascular dementia. Sleep related risk factors were independent of genetic risk for Alzheimer's and Parkinson's, potentially compensating for low genetic risk in overall disease etiology. There is a significant multiplicative interaction regarding the combined risk of sleep disorders and Parkinson's disease. Poor sleep hygiene and sleep apnea are relatively modifiable risk factors with several treatment options, including CPAP and surgery, that could potentially reduce the risk of neurodegeneration. This is particularly interesting in how sleep related risk factors are significantly and independently enriched in manifesting NDD patients with low levels of genetic risk factors for these diseases.

20.
Res Sq ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014237

RESUMEN

Background: Single-cell RNA sequencing has opened a window into clarifying the complex underpinnings of disease, particularly in quantifying the relevance of tissue- and cell-type-specific gene expression. Methods: To identify the cell types and genes important to therapeutic target development across the neurodegenerative disease spectrum, we leveraged genome-wide association studies, recent single-cell sequencing data, and bulk expression studies in a diverse series of brain region tissues. Results: We were able to identify significant immune-related cell types in the brain across three major neurodegenerative diseases: Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. Subsequently, putative roles of 30 fine-mapped loci implicating seven genes in multiple neurodegenerative diseases and their pathogenesis were identified. Conclusions: We have helped refine the genetic regions and cell types effected across multiple neurodegenerative diseases, helping focus future translational research efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...