Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Retrovirology ; 12: 3, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25614027

RESUMEN

BACKGROUND: Human APOBEC3H (A3H) belongs to the A3 family of host restriction factors, which are cytidine deaminases that catalyze conversion of deoxycytidine to deoxyuridine in single-stranded DNA. A3 proteins contain either one (A3A, A3C, A3H) or two (A3B, A3D, A3F, A3G) Zn-binding domains. A3H has seven haplotypes (I-VII) that exhibit diverse biological phenotypes and geographical distribution in the human population. Its single Zn-coordinating deaminase domain belongs to a phylogenetic cluster (Z3) that is different from the Z1- and Z2-type domains in other human A3 proteins. A3H HapII, unlike A3A or A3C, has potent activity against HIV-1. Here, we sought to identify the determinants of A3H HapII deaminase and antiviral activities, using site-directed sequence- and structure-guided mutagenesis together with cell-based, biochemical, and HIV-1 infectivity assays. RESULTS: We have constructed a homology model of A3H HapII, which is similar to the known structures of other A3 proteins. The model revealed a large cluster of basic residues (not present in A3A or A3C) that are likely to be involved in nucleic acid binding. Indeed, RNase A pretreatment of 293T cell lysates expressing A3H was shown to be required for detection of deaminase activity, indicating that interaction with cellular RNAs inhibits A3H catalytic function. Similar observations have been made with A3G. Analysis of A3H deaminase substrate specificity demonstrated that a 5' T adjacent to the catalytic C is preferred. Changing the putative nucleic acid binding residues identified by the model resulted in reduction or abrogation of enzymatic activity, while substituting Z3-specific residues in A3H to the corresponding residues in other A3 proteins did not affect enzyme function. As shown for A3G and A3F, some A3H mutants were defective in catalysis, but retained antiviral activity against HIV-1vif (-) virions. Furthermore, endogenous reverse transcription assays demonstrated that the E56A catalytic mutant inhibits HIV-1 DNA synthesis, although not as efficiently as wild type. CONCLUSIONS: The molecular and biological activities of A3H are more similar to those of the double-domain A3 proteins than to those of A3A or A3C. Importantly, A3H appears to use both deaminase-dependent and -independent mechanisms to target reverse transcription and restrict HIV-1 replication.


Asunto(s)
Aminohidrolasas/genética , Aminohidrolasas/metabolismo , VIH-1/inmunología , VIH-1/fisiología , Replicación Viral , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica
2.
Nucleic Acids Res ; 42(2): 1095-110, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24163103

RESUMEN

Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A's deaminase and nucleic acid binding activities. We find that A3A binds ssRNA, but the RNA and DNA binding interfaces differ and no deamination of ssRNA is detected. Surprisingly, with only one exception (G105A), alanine substitution mutants with changes in residues affected by specific ssDNA binding retain deaminase activity. Furthermore, A3A binds and deaminates ssDNA in a length-dependent manner. Using catalytically active and inactive A3A mutants, we show that the determinants of A3A deaminase activity and anti-LINE-1 activity are not the same. Finally, we demonstrate A3A's potential to mutate genomic DNA during transient strand separation and show that this process could be counteracted by ssDNA binding proteins. Taken together, our studies provide new insights into the molecular properties of A3A and its role in multiple cellular and antiviral functions.


Asunto(s)
Citidina Desaminasa/química , Proteínas/química , Secuencia de Aminoácidos , Aminoácidos/química , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Desaminación , Proteínas de Escherichia coli/metabolismo , Transcriptasa Inversa del VIH/metabolismo , Humanos , Elementos de Nucleótido Esparcido Largo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Proteínas/genética , Proteínas/metabolismo , ARN/química , ARN/metabolismo , Alineación de Secuencia , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...