Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
World Allergy Organ J ; 17(8): 100949, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220465

RESUMEN

Background: Cardiovascular diseases (CVDs) have been associated with atopic dermatitis (AD), including in Korean patients. Previous studies on AD have primarily focused on patients of European ancestry, while the Asian endotype exhibits distinct characteristics. This study aimed to characterize the blood proteomic signature of Korean patients with moderate-to-severe AD, with an emphasis on proteins related to CVDs. Methods: A total of 78 participants, including 39 patients with moderate-to-severe AD and 39 age- and sex-matched healthy controls, were enrolled. Blood proteomics analysis was performed using the Olink CVD II panel, which measures the expression levels of 92 proteins associated with CVDs. Results: Unsupervised hierarchical clustering revealed 44 upregulated and 5 downregulated proteins in AD patients compared to healthy controls. Principal component analysis (PCA) effectively distinguished AD patients from healthy subjects based on the complete set of proteins or the subset of upregulated proteins. A multiple linear regression model comprising CCL17 and FGF21 showed a strong correlation with disease severity (R = 0.619). Correlation analysis identified 25 highly correlated proteins, including STK4, ITGB1BP2, and DECR1, which were newly found to be upregulated in Korean AD patients. Pathway analysis highlighted the involvement of these proteins in vascular system, inflammation, and lipid metabolism pathways. Conclusion: The blood proteomic profile of moderate-to-severe AD patients in Korea differed from healthy controls using the CVD II panel. This study provides potential biomarkers for the AD-CVD association and insights into the pathways contributing to this relationship in the Korean population.

2.
Genomics Inform ; 21(2): e18, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37704208

RESUMEN

Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.

3.
Molecules ; 25(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998370

RESUMEN

Methylation is a common structural modification that can alter and improve the biological activities of natural compounds. O-Methyltransferases (OMTs) catalyze the methylation of a wide array of secondary metabolites, including flavonoids, and are potentially useful tools for the biotechnological production of valuable natural products. An OMT gene (PfOMT3) was isolated from perilla leaves as a putative flavonoid OMT (FOMT). Phylogenetic analysis and sequence comparisons showed that PfOMT3 is a class II OMT. Recombinant PfOMT3 catalyzed the methylation of flavonoid substrates, whereas no methylated product was detected in PfOMT3 reactions with phenylpropanoid substrates. Structural analyses of the methylation products revealed that PfOMT3 regiospecifically transfers a methyl group to the 7-OH of flavonoids. These results indicate that PfOMT3 is an FOMT that catalyzes the 7-O-methylation of flavonoids. PfOMT3 methylated diverse flavonoids regardless of their backbone structure. Chrysin, naringenin and apigenin were found to be the preferred substrates of PfOMT3. Recombinant PfOMT3 showed moderate OMT activity toward eriodictyol, luteolin and kaempferol. To assess the biotechnological potential of PfOMT3, the biotransformation of flavonoids was performed using PfOMT3-transformed Escherichia coli. Naringenin and kaempferol were successfully bioconverted to the 7-methylated products sakuranetin and rhamnocitrin, respectively, by E. coli harboring PfOMT3.


Asunto(s)
Flavonas/biosíntesis , Metiltransferasas/metabolismo , Perilla/enzimología , Hojas de la Planta/enzimología , Secuencia de Aminoácidos , Biotecnología , Cromatografía Líquida de Alta Presión , Flavonas/química , Cinética , Metiltransferasas/química , Metiltransferasas/aislamiento & purificación , Filogenia , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...