Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(24): 16039-16046, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260714

RESUMEN

The synthesis of metal-organic frameworks (MOFs) and their processing into structures with tailored hierarchical porosity is essential for using MOFs in the adsorption-driven gas separation process. We report the synthesis of modified Cu-MOF nanocrystals for CO2 separation from CH4 and N2, prepared from DABCO (1,4-diazabicyclo[2.2.2] octane) and 9,10 anthracene dicarboxylic acid linkers with copper metal salt. The synthesis parameters were optimized to introduce mesoporosity in the microporous Cu-MOF crystals. The volumetric CO2 adsorption capacity of the new hierarchical Cu-MOF was 2.58 mmol g-1 at 293 K and 100 kPa with a low isosteric heat of adsorption of 28 kJ mol-1. The hierarchical Cu-MOF nanocrystals were structured into mechanically stable pellets with a diametral compression strength exceeding 1.2 MPa using polyvinyl alcohol (PVA) as a binder. The CO2 breakthrough curves were measured from a binary CO2-CH4 (45/55 vol%) gas mixture at 293 K and 400 kPa pressure on Cu-MOF pellets to demonstrate the role of hierarchical porosity in mass transfer kinetics during adsorption. The structured hierarchical Cu-MOF pellets showed stable cyclic CO2 adsorption capacity during 5 adsorption-desorption cycles with a CO2 uptake capacity of 3.1 mmol g-1 at 400 kPa and showed a high mass transfer coefficient of 1.8 m s-1 as compared to the benchmark zeolite NaX commercialized binderless granules, suggesting that the introduction of hierarchical porosity in Cu-MOF pellets can effectively reduce the time for CO2 separation cycles.

2.
Nanotechnology ; 33(43)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35835080

RESUMEN

Ceramic materials with high surface area, large and open porosity are considered excellent supports for enzyme immobilization owing to their stability and reusability. The present study reports the electrospinning of aluminum silicate nanofiber supports from sol-gel precursors, the impact of different fabrication parameters on the microstructure of the nanofibers and their performance in enzyme immobilization. A change in nanofiber diameter and pore size of the aluminum silicate nanofibers was observed upon varying specific processing parameters, such as the sol-composition (precursor and polymer concentration), the electrospinning parameters and the subsequent heat treatment (calcination temperature). The enzyme, alcohol dehydrogenase (ADH), was immobilized on the aluminum silicate nanofibers by physical adsorption and covalent bonding. Activity retention of 17% and 42% was obtained after 12 d of storage and repeated reaction cycles for physically adsorbed and covalently bonded ADH, respectively. Overall, the immobilization of ADH on aluminum silicate nanofibers resulted in high enzyme loading and activity retention. However, as compared to covalent immobilization, a marked decrease in the enzyme activity during storage for physically adsorbed enzymes was observed, which was ascribed to leakage of the enzymes from the nanofibers. Such fibers can improve enzyme stability and promote a higher residual activity of the immobilized enzyme as compared to the free enzyme. The results shown in this study thus suggest that aluminum silicate nanofibers, with their high surface area, are promising support materials for the immobilization of enzymes.


Asunto(s)
Nanofibras , Alcohol Deshidrogenasa/química , Aluminio , Silicatos de Aluminio , Enzimas Inmovilizadas/química , Nanofibras/química
3.
J Vis Exp ; (169)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33749681

RESUMEN

We present an in-house, in situ Grazing Incidence Small Angle X-ray Scattering (GISAXS) experiment, developed to probe the drying kinetics of roll-to-roll slot-die coating of the active layer in organic photovoltaics (OPVs), during deposition. For this demonstration, the focus is on the combination of P3HT:O-IDTBR and P3HT:EH-IDTBR, which have different drying kinetics and device performance, despite their chemical structure only varying slightly by the sidechain of the small molecule acceptor. This article provides a step-by-step guide to perform an in situ GISAXS experiment and demonstrates how to analyze and interpret the results. Usually, performing this type of in situ X-ray experiments to investigate the drying kinetics of the active layer in OPVs relies on access to synchrotrons. However, by using and further developing the method described in this paper, it is possible to perform experiments with a coarse temporal and spatial resolution, on a day-to-day basis to gain fundamental insight in the morphology of drying inks.


Asunto(s)
Laboratorios , Dispersión del Ángulo Pequeño , Energía Solar , Difracción de Rayos X , Desecación , Tinta , Radiografía , Sincrotrones , Rayos X
4.
ACS Omega ; 5(22): 12682-12691, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32548451

RESUMEN

In recent times, flexible piezoresistive polymer nanocomposite-based strain sensors are in high demand in wearable devices and various new age applications. In the polymer nanocomposite-based strain sensor, the dispersion of conductive nanofiller remains challenging due to the competing requirements of homogenized dispersion of nanofillers in the polymer matrix and retaining of the inherent characteristics of nanofillers. In the present work, waterproof and flexible poly(vinylidene difluoride) (PVDF) with a polymer-functionalized hydrogen-exfoliated graphene (HEG)-based piezoresistive strain sensor is developed and demonstrated. The novelty of the work is the incorporation of polystyrene sulfonate sodium salt (PSS) polymer-functionalized HEG in a PVDF-based flexible piezoresistive strain sensor. The PSS-HEG provides stable dispersion in the hydrophobic PVDF polymer matrix without sacrificing its inherent characteristics. The electrical conductivity of the PVDF/PSS-HEG-based strain sensor is 0.3 S cm-1, which is two orders of magnitude higher than the PVDF/HEG-based strain sensor. Besides, near the percolation region, the PVDF/PSS-HEG shows a maximum gauge factor of 10, which is about two times higher than the PVDF/HEG-based flexible strain sensor and 5-fold higher than the commercially available metallic strain gauge. The enhancement in the gauge factor is due to the stable dispersion of PSS-HEG in the PVDF matrix and electron conjugation caused by the adherence of negatively charged sulfonate functional groups on the HEG. The developed waterproof flexible strain sensor is demonstrated using portable wireless interfacing device for various applications. This work shows that the waterproof flexible PVDF/PSS-HEG-based strain sensor can be a potential alternative to the commercially available metallic strain gauge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...