Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
2.
Mol Neurodegener ; 19(1): 18, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38365827

RESUMEN

It has recently become well-established that there is a connection between Alzheimer's disease pathology and gut microbiome dysbiosis. We have previously demonstrated that antibiotic-mediated gut microbiota perturbations lead to attenuation of Aß deposition, phosphorylated tau accumulation, and disease-associated glial cell phenotypes in a sex-dependent manner. In this regard, we were intrigued by the finding that a marine-derived oligosaccharide, GV-971, was reported to alter gut microbiota and reduce Aß amyloidosis in the 5XFAD mouse model that were treated at a point when Aß burden was near plateau levels. Utilizing comparable methodologies, but with distinct technical and temporal features, we now report on the impact of GV-971 on gut microbiota, Aß amyloidosis and microglial phenotypes in the APPPS1-21 model, studies performed at the University of Chicago, and independently in the 5X FAD model, studies performed at Washington University, St. Louis.Methods To comprehensively characterize the effects of GV-971 on the microbiota-microglia-amyloid axis, we conducted two separate investigations at independent institutions. There was no coordination of the experimental design or execution between the two laboratories. Indeed, the two laboratories were not aware of each other's experiments until the studies were completed. Male and female APPPS1-21 mice were treated daily with 40, 80, or 160 mg/kg of GV-971 from 8, when Aß burden was detectable upto 12 weeks of age when Aß burden was near maximal levels. In parallel, and to corroborate existing published studies and further investigate sex-related differences, male and female 5XFAD mice were treated daily with 100 mg/kg of GV-971 from 7 to 9 months of age when Aß burden was near peak levels. Subsequently, the two laboratories independently assessed amyloid-ß deposition, metagenomic, and neuroinflammatory profiles. Finally, studies were initiated at the University of Chicago to evaluate the metabolites in cecal tissue from vehicle and GV-971-treated 5XFAD mice.Results These studies showed that independent of the procedural differences (dosage, timing and duration of treatment) between the two laboratories, cerebral amyloidosis was reduced primarily in male mice, independent of strain. We also observed sex-specific microbiota differences following GV-971 treatment. Interestingly, GV-971 significantly altered multiple overlapping bacterial species at both institutions. Moreover, we discovered that GV-971 significantly impacted microbiome metabolism, particularly by elevating amino acid production and influencing the tryptophan pathway. The metagenomics and metabolomics changes correspond with notable reductions in peripheral pro-inflammatory cytokine and chemokine profiles. Furthermore, GV-971 treatment dampened astrocyte and microglia activation, significantly decreasing plaque-associated reactive microglia while concurrently increasing homeostatic microglia only in male mice. Bulk RNAseq analysis unveiled sex-specific changes in cerebral cortex transcriptome profiles, but most importantly, the transcriptome changes in the GV-971-treated male group revealed the involvement of microglia and inflammatory responses.Conclusions In conclusion, these studies demonstrate the connection between the gut microbiome, neuroinflammation, and Alzheimer's disease pathology while highlighting the potential therapeutic effect of GV-971. GV-971 targets the microbiota-microglia-amyloid axis, leading to the lowering of plaque pathology and neuroinflammatory signatures in a sex-dependent manner when given at the onset of Aß deposition or when given after Aß deposition is already at higher levels.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Microbioma Gastrointestinal , Humanos , Ratones , Masculino , Femenino , Animales , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Ratones Transgénicos , Amiloidosis/metabolismo , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/patología , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Modelos Animales de Enfermedad
3.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37279069

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. The APOE-ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset AD. The APOE genotype modulates the effect of sleep disruption on AD risk, suggesting a possible link between apoE and sleep in AD pathogenesis, which is relatively unexplored. We hypothesized that apoE modifies Aß deposition and Aß plaque-associated tau seeding and spreading in the form of neuritic plaque-tau (NP-tau) pathology in response to chronic sleep deprivation (SD) in an apoE isoform-dependent fashion. To test this hypothesis, we used APPPS1 mice expressing human APOE-ε3 or -ε4 with or without AD-tau injection. We found that SD in APPPS1 mice significantly increased Aß deposition and peri-plaque NP-tau pathology in the presence of APOE4 but not APOE3. SD in APPPS1 mice significantly decreased microglial clustering around plaques and aquaporin-4 (AQP4) polarization around blood vessels in the presence of APOE4 but not APOE3. We also found that sleep-deprived APPPS1:E4 mice injected with AD-tau had significantly altered sleep behaviors compared with APPPS1:E3 mice. These findings suggest that the APOE-ε4 genotype is a critical modifier in the development of AD pathology in response to SD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Humanos , Animales , Apolipoproteína E4/genética , Péptidos beta-Amiloides/genética , Apolipoproteínas E , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E3/genética , Placa Amiloide/genética , Placa Amiloide/patología , Sueño/genética
4.
J Marital Fam Ther ; 49(2): 447-462, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36682070

RESUMEN

Increased attention to the prevalence and impact of traumatic experiences have been highlighted within the mental health field since Felitti et al.'s study of adverse childhood experiences. Black communities experience traumatic events at a higher rate than other racial groups. The phenomena of historical trauma, race-based trauma, and intergenerational trauma have been speculated to be reasons for this discrepancy. In this article, the authors explore factors that compound the traumatic experiences of Black communities, review socioculturally attuned family therapy and trauma-informed care, and propose an approach to addressing intergenerational trauma in Black families that integrates socioculturally attuned family therapy and trauma-informed care.


Asunto(s)
Experiencias Adversas de la Infancia , Trauma Histórico , Humanos , Terapia Familiar , Salud Mental
5.
PLoS One ; 12(5): e0175073, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28558035

RESUMEN

In Drosophila, neuropeptide Pigment Dispersing Factor (PDF) is expressed in small and large ventral Lateral Neurons (sLNv and lLNv), among which sLNv are critical for activity rhythms in constant darkness. Studies show that this is mediated by rhythmic accumulation and likely secretion of PDF from sLNv dorsal projections, which in turn synchronises molecular oscillations in downstream circadian neurons. Using targeted expression of a neurodegenerative protein Huntingtin in LNv, we evoke a selective loss of neuropeptide PDF and clock protein PERIOD from sLNv soma. However, PDF is not lost from sLNv dorsal projections and lLNv. These flies are behaviourally arrhythmic in constant darkness despite persistence of PDF oscillations in sLNv dorsal projections and synchronous PERIOD oscillations in downstream circadian neurons. We find that PDF oscillations in sLNv dorsal projections are not sufficient for sustenance of activity rhythms in constant darkness and this is suggestive of an additional component that is possibly dependent on sLNv molecular clock and PDF in sLNv soma. Additionally, despite loss of PERIOD in sLNv, their activity rhythms entrain to light/dark cycles indicating that sLNv molecular clocks are not necessary for entrainment. Under constant light, these flies lack PDF from both soma and dorsal projections of sLNv, and when subjected to light/dark cycles, show morning and evening anticipation and accurately phased morning and evening peaks. Thus, under light/dark cycles, PDF in sLNv is not necessary for morning anticipation.


Asunto(s)
Ritmo Circadiano , Oscuridad , Neuronas/fisiología , Animales , Drosophila/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...