Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(15): 4383-4392, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38513213

RESUMEN

Physical reservoir computing is a promising way to develop efficient artificial intelligence using physical devices exhibiting nonlinear dynamics. Although magnetic materials have advantages in miniaturization, the need for a magnetic field and large electric current results in high electric power consumption and a complex device structure. To resolve these issues, we propose a redox-based physical reservoir utilizing the planar Hall effect and anisotropic magnetoresistance, which are phenomena described by different nonlinear functions of the magnetization vector that do not need a magnetic field to be applied. The expressive power of this reservoir based on a compact all-solid-state redox transistor is higher than the previous physical reservoir. The normalized mean square error of the reservoir on a second-order nonlinear equation task was 1.69 × 10-3, which is lower than that of a memristor array (3.13 × 10-3) even though the number of reservoir nodes was fewer than half that of the memristor array.

2.
Sci Rep ; 13(1): 21060, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030675

RESUMEN

Reservoir computing (RC) is a machine learning framework suitable for processing time series data, and is a computationally inexpensive and fast learning model. A physical reservoir is a hardware implementation of RC using a physical system, which is expected to become the social infrastructure of a data society that needs to process vast amounts of information. Ion-gating reservoirs (IGR) are compact and suitable for integration with various physical reservoirs, but the prediction accuracy and operating speed of redox-IGRs using WO3 as the channel are not sufficient due to irreversible Li+ trapping in the WO3 matrix during operation. Here, in order to enhance the computation performance of redox-IGRs, we developed a redox-based IGR using a (104) oriented LiCoO2 thin film with high electronic and ionic conductivity as a trap-free channel material. The subject IGR utilizes resistance change that is due to a redox reaction (LiCoO2 ⟺ Li1-xCoO2 + xLi+ + xe-) with the insertion and desertion of Li+. The prediction error in the subject IGR was reduced by 72% and the operation speed was increased by 4 times compared to the previously reported WO3, which changes are due to the nonlinear and reversible electrical response of LiCoO2 and the high dimensionality enhanced by a newly developed physical masking technique. This study has demonstrated the possibility of developing high-performance IGRs by utilizing materials with stronger nonlinearity and by increasing output dimensionality.

3.
Sci Adv ; 8(50): eade1156, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516242

RESUMEN

Physical reservoir computing has recently been attracting attention for its ability to substantially reduce the computational resources required to process time series data. However, the physical reservoirs that have been reported to date have had insufficient computational capacity, and most of them have a large volume, which makes their practical application difficult. Here, we describe the development of a Li+ electrolyte-based ion-gating reservoir (IGR), with ion-electron-coupled dynamics, for use in high-performance physical reservoir computing. A variety of synaptic responses were obtained in response to past experience, which were stored as transient charge density patterns in an electric double layer, at the Li+ electrolyte/diamond interface. Performance for a second-order nonlinear dynamical equation task is one order of magnitude higher than memristor-based reservoirs. The edge-of-chaos state of the IGR enabled the best computational capacity. The IGR described here opens the way for high-performance and integrated neural network devices.

4.
ACS Nano ; 14(11): 16065-16072, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33137249

RESUMEN

An all-solid-state redox device, composed of magnetite (Fe3O4) thin film and Li+ conducting electrolyte thin film, was fabricated for the manipulation of a magnetization angle at room temperature (RT). This is a key technology for the creation of efficient spintronics devices, but has not yet been achieved at RT by other carrier doping methods. Variations in magnetization angle and magnetic stability were precisely tracked through the use of planar Hall measurements at RT. The magnetization angle was reversibly manipulated at 10° by maintaining magnetic stability. Meanwhile, the manipulatable angle reached 56°, although the manipulation became irreversible when the magnetic stability was reduced. This large manipulation of magnetic angle was achieved through tuning of the 3d electron number and modulation of the internal strain in the Fe3O4 due to the insertion of high-density Li+ (approximately 1021 cm-3). This RT manipulation is applicable to highly integrated spintronics devices due to its simple structure and low electric power consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...