Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Chin Med ; 49(2): 487-504, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33622211

RESUMEN

Mistletoe extracts (Viscum album L.) have been widely used as complementary and alternative medicines for the treatment of cancer, and their cytotoxic effects have been reported on various types of cancer. However, the molecular targets of mistletoe extracts have not been well studied. Herein, we investigated molecules associated with the in vitro and in vivo anticancer effects of mistletoe extract using 4T1 murine breast cancer cells. Mistletoe extract induced apoptosis and inhibited the signal transducer and activator of transcription3 (STAT3) phosphorylation. This inhibition was accompanied by the downregulations of forkhead box M1 (FOXM1) and the DNA repair proteins, RAD51 and survivin. Mistletoe extract simultaneously increased the expression of the DNA damage marker proteins, phosphorylated H2A histone family member X (H2A.X), and phosphorylated p38. Furthermore, mistletoe extract effectively suppressed tumor growth in 4T1 tumor-bearing BALB/c mice. In addition to tumor growth inhibition, mistletoe extract inhibited lung metastasis in the tumor-bearing mice and cell invasiveness by downregulating the expressions of matrix metalloproteinases (MMPs), urokinase-type plasminogen activator (uPA), uPA receptor, and markers of epithelial-mesenchymal transition (snail and fibronectin). Taken together, our results suggest that mistletoe extract targets the STAT3-FOXM1 pathway for its cytotoxic effects, and that mistletoe extracts might be useful for the treatment of patients with cancers highly expressing the STAT3-FOXM1 pathway.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Proteína Forkhead Box M1/metabolismo , Muérdago , Extractos Vegetales/farmacología , Factor de Transcripción STAT3/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Ratones , Ratones Endogámicos BALB C
2.
Oncol Lett ; 17(2): 2523-2530, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30675314

RESUMEN

Recent studies have reported that metformin (Met), the first-line medication for the treatment of type 2 diabetes, exhibited anticancer and chemoprotective effects in diverse cancer cells. In this study, we investigated the effects of Met on the drug-resistance of 4T1 murine breast cancer tumorspheres (TS) and the mechanism responsible for its drug-resistance. 4T1 TS exhibited accumulations of cells at the G0/G1 phase compared with cells in monolayer culture, which suggested the majority of cells in TS were quiescent. Furthermore, it was identified that activations of the signal transducer and activator of transcription 3 (STAT3) and protein kinase B (AKT) signaling pathways in 4T1 TS conferred drug-resistance to doxorubicin (Dox) and lapatinib (Lapa). However, Met selectively targeted TS rather than cells in monolayer culture and increased the cytotoxic effect of Dox on TS by inhibiting activations of the STAT3 and AKT signaling pathways. These observations suggested that inhibitions of STAT3 and AKT underlie the selective cytotoxic effects of Met on TS. In addition, Met exhibited synergistic antitumor effects with Dox on 4T1 tumor-bearing BALB/c mice. Our findings suggest that combinations of Met and cytotoxic anticancer drugs may offer an advantage for treating drug-resistant breast cancer.

3.
Chemosphere ; 214: 846-854, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30316177

RESUMEN

Nickel-containing wastewater is a serious hazard to water environment, so that it is a burning issue to find an efficient and environment-friendly adsorbent. The conventional biochar could not effectively adsorb nickel (Ni(II)), so our study focuses on exploring the adsorption of chemically modified biochar to Ni(II). In this study, the biochar derived from waste peanut shell was modified by KMnO4 and KOH (MBC). And a series of experiment were carried out to evaluate the sorption ability and explore adsorption mechanism of modified biochar to Ni(II). The results showed the adsorption ability of MBC to Ni(II) reached 87.15 mg g-1. And the reaction process was spontaneous and endothermic chemisorption. Meanwhile, the analysis of FTIR and XPS visually revealed that the amine groups in the modified biochar could form NH2Ni with Ni(II) by complexation, while the hydroxyl could form nickel hydroxide and complexed nickel oxide by co-precipitation and complexation. This research showed this novel MBC is a promising adsorbent and has a fantastic prospect in the application of nickel-containing wastewater.


Asunto(s)
Arachis/química , Carbón Orgánico/química , Níquel/química
4.
Environ Sci Pollut Res Int ; 25(31): 31346-31357, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30194580

RESUMEN

Modified biochar has attracted wide attention due to its advantageous adsorption performance. However, the influence of modification process of biochar on adsorption capacity was seldom studied. In this study, biochar derived from corn stalks was modified through two kinds of modification processes: pre-pyrolysis (MBCpre) and post-pyrolysis (MBCpost) modification with citric acid, sodium hydroxide, ferric chloride, respectively. The results showed that the biochar modified by ferric chloride (MBC) provided better adsorption capacity for Cr(VI), and the pre-pyrolysis offered more favorable adsorption capacity for biochar than post-pyrolysis. By means of instrumental analysis, it was found that MBCpre owned highly dispersed Fe3O4 particles and larger surface area, which could be the critical role for enhancing the adsorption capacity of MBCpre. Meanwhile, MBCpost appeared more protonated oxygen-rich functional groups(C=O, -OH, etc.) and adsorbed Cr(VI) by electrostatic attraction and complexation. This study will offer a novel idea for the treatment of chromium-containing wastewater by selecting the modification processes of biochar. Graphical abstract.


Asunto(s)
Carbón Orgánico/química , Cromo/química , Contaminantes Químicos del Agua/química , Adsorción , Cloruros/química , Compuestos Férricos/química , Aguas Residuales , Zea mays
5.
Oncol Rep ; 37(2): 1219-1226, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28035396

RESUMEN

TAM receptor tyrosine kinases (RTKs), Tyro3, Axl and MerTK, transduce diverse signals responsible for cell survival, growth, proliferation and anti-apoptosis. In the present study, we demonstrated the effect of luteolin, a flavonoid with antioxidant, anti-inflammatory and anticancer activities, on the expression and activation of TAM RTKs and the association with its cytotoxicity in non-small cell lung cancer (NSCLC) cells. We observed the cytotoxic effect of luteolin in parental A549 and H460 cells as well as in cisplatin-resistant A549/CisR and H460/CisR cells. Exposure of these cells to luteolin also resulted in a dose­dependent decrease in clonogenic ability. Next, luteolin was found to decrease the protein levels of all three TAM RTKs in the A549 and A549/CisR cells in a dose­dependent manner. In a similar manner, in H460 and H460/CisR cells, the protein levels of Axl and Tyro3 were decreased following luteolin treatment. In addition, Axl promoter activity was decreased by luteolin, indicating that luteolin suppresses Axl expression at the transcriptional level. We next found that luteolin abrogated Axl phosphorylation in response to growth arrest-specific 6 (Gas6), its ligand, implying the inhibitory effect of luteolin on Gas6-induced Axl activation. Ectopic expression of Axl was observed to attenuate the antiproliferative effect of luteolin, while knockdown of the Axl protein level using a gold nanoparticle-assisted gene delivery system increased its cytotoxicity. In contrast to the inhibitory effect of luteolin on the expression of TAM RTKs, interleukin-8 (IL-8) production was not decreased by luteolin in H460 and H460/CisR cells, while IL-8 production/cell was increased. Collectively, our data suggest that TAM RTKs, but not IL-8, are promising therapeutic targets of luteolin to abrogate cell proliferation and to overcome chemoresistance in NSCLC cells.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Interleucina-8/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Luteolina/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa c-Mer , Tirosina Quinasa del Receptor Axl
6.
Oncotarget ; 7(50): 83308-83318, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27829217

RESUMEN

Breast cancer is the most common malignant disease occurring in women and represents a substantial proportion of the global cancer burden. In these patients, metastasis but not the primary tumor is the main cause of breast cancer-related deaths. Here, we report the novel finding that DN10764 (AZD7762, a selective inhibitor of checkpoint kinases 1 and 2) can suppress breast cancer metastasis. In breast cancer cells, DN10764 inhibited cell proliferation and GAS6-mediated AXL signaling, consequently resulting in suppressed migration and invasion. In addition, DN10764 induced caspase 3/7-mediated apoptosis in breast cancer cells and inhibited tube formation of human umbilical vein endothelial cells. Finally, DN10764 significantly suppressed the tumor growth and metastasis of breast cancer cells in in vivo metastasis models. Taken together, these data suggest that therapeutic strategies targeting AXL in combination with systemic therapies could improve responses to anti-cancer therapies and reduce breast cancer recurrence and metastases.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Neoplasias Pulmonares/prevención & control , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología , Urea/análogos & derivados , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Fisiológica/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Urea/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor Axl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...