Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 117: 154917, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301184

RESUMEN

OBJECTIVE: Multiple sclerosis (MS) is an immune disease in the central nervous system (CNS) associated with Th17 cells. Moreover, STAT3 initiates Th17 cell differentiation and IL-17A expression through facilitating RORγt in MS. Here, we reported that magnolol, isolated from Magnolia officinalis Rehd. Et Wils, was regarded as a candidate for MS treatment verified by both in vitro and in vivo studies. METHODS: In vivo, experimental autoimmune encephalomyelitis (EAE) model in mice was employed to evaluate the alleviation of magnolol on myeloencephalitis. In vitro, FACS assay was employed to evaluate the effect of magnolol on Th17 and Treg cell differentiation and IL-17A expression; network pharmacology-based study was applied to probe the involved mechanisms; western blotting, immunocytochemistry, and luciferase reporter assay was used to further confirm the regulation of magnolol on JAK/STATs signaling pathway; surface plasmon resonance (SPR) assay and molecular docking were applied to manifest affinity with STAT3 and binding sites; overexpression of STAT3 was employed to verify whether magnolol attenuates IL-17A through STAT3 signaling pathway. RESULTS: In vivo, magnolol alleviated loss of body weight and severity of EAE mice; magnolol improved lesions in spinal cords and attenuated CD45 infiltration, and serum cytokines levels; correspondingly, magnolol focused on inhibiting Th17 differentiation and IL-17A expression in splenocyte of EAE mice; moreover, magnolol selectively inhibited p-STAT3(Y705) and p-STAT4(Y693) of both CD4+ and CD8+ T cells in splenocyte of EAE mice. In vitro, magnolol selectively inhibited Th17 differentiation and IL-17A expression without impact on Treg cells; network pharmacology-based study revealed that magnolol perhaps diminished Th17 cell differentiation through regulating STAT family members; western blotting further confirmed that magnolol inhibited p-JAK2(Y1007) and selectively antagonized p-STAT3(Y705) and slightly decreased p-STAT4(Y693); magnolol antagonized both STAT3 nucleus location and transcription activity; magnolol had a high affinity with STAT3 and the specific binding site perhaps to be at SH2 domain; overexpression of STAT3 resulted in failed inhibition of magnolol on IL-17A. CONCLUSION: Magnolol selectively inhibited Th17 differentiation and cytokine expression through selectively blocking of STAT3 resulting in decreased the ratio of Th17/Treg cells for treating MS, suggesting that the potential of magnolol for treating MS as novel STAT3 inhibitor.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Esclerosis Múltiple/tratamiento farmacológico , Células Th17 , Interleucina-17/metabolismo , Linfocitos T CD8-positivos/metabolismo , Simulación del Acoplamiento Molecular , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Ratones Endogámicos C57BL , Células TH1
2.
Int Immunopharmacol ; 108: 108894, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35729830

RESUMEN

Ulcerative colitis (UC) is a chronically relapsing inflammatory disease in the intestinal tract. Current unsatisfactory treatments prompt people to seek for alternative therapies and drug candidates. Cryptotanshinone (CTS), a diterpene quinoneextractedfromthe roots ofSalviamiltiorrhiza, has recently been shown to inhibit acute colitis by reducing pro-inflammatory mediators. However, whether CTS can protect against chronic UC and its effect on T lymphocytes remain unknown. In this study, CTS (20, 60 mg/kg) showed potent inhibitory activity against dextran sulfate sodium (DSS)-induced acute UC, as determined by weight loss, disease activity, colon length and histology. Similarly, in a model of DSS-induced chronic colitis, the administration of CTS prevented the disease progression with longer colon length, lower histological scores, and less expression of fibrosis-related collagen and α-smooth muscle actin in the colon. CTS also reduced the proportion of CD4+IL-17A+ Th17 cells in spleen and mesenteric lymph nodes of mice with acute or chronic colitis. However, CTS at 20 mg/kg had no effect on regulatory T cells (Tregs). In addition, CTS reduced the phosphorylation of signal transduction and transcription activator 3 (STAT3) in DSS-treated colon tissue. Further study showed that CTS concentration-dependently suppressed the differentiation of naïve CD4+ T cells into Th17 cells. CTS could not inhibit the activation and proliferation of T lymphocytes or attenuate the secretion of cytokines including IL-10, IL-2, IL-6 and IFN-γ, but could inhibit the production of IL-17A and TNF-α in Con A-stimulated splenocytes. CTS suppressed IL-6-induced phosphorylation and nuclear translocation of STAT3. In conclusion, our study demonstrated that CTS alleviated acute and chronic UC by suppressing STAT3 activation and Th17 cell differentiation, suggesting that it may be a promising candidate drug for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Diferenciación Celular , Colitis/inducido químicamente , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon/patología , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Humanos , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Ratones , Fenantrenos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Células Th17
3.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615213

RESUMEN

Huangqin is the dried root of Scutellaria baicalensis Georgi, which has been widely utilized for heat-clearing (Qingre) and dewetting (Zaoshi), heat-killed (Xiehuo) and detoxifying (Jiedu) in the concept of Traditional Chinese Medicine and is used for treating inflammation and cancer in clinical formulas. Neobaicalein (NEO) is of flavonoid isolated from Huangqin and has been reported to possess prominent anti-inflammatory effects in published work. Th17/Treg balance shift to Th17 cells is an essential reason for autoimmune inflammatory diseases. However, the role NEO plays in Th17 and Treg and the underlying mechanism has not been elucidated yet. Network pharmacology-based study revealed that NEO predominantly regulated IL-17 signaling pathway. Moreover, our result shown that NEO (3-30 µmol/L) down-regulated Th17 differentiation and cellular supernatant and intracellular IL-17A level and tumor necrosis factor α production in a concentration-dependent manner. The further mechanism research revealed that NEO also specifically inhibited phosphorylation of STAT3(Tyr725) and STAT4 (Y693) without influence on activation of STAT5 and STAT6 in splenocytes. Immunofluorescence results illuminated that NEO effectively blocked STAT3 translocated into nucleus. Interestingly, NEO at appreciated dose could only inhibit Th17 cell differentiation and have no effect on Treg differentiation. The present study revealed that NEO effectively inhibited Th17 cell differentiation through specifically blocking the activation of STAT3 signaling without inactivation of STAT5 and STAT6. Additional inhibitory effect on activation of STAT4 by NEO also suggested the potential for antagonism against Th1 differentiation. All work suggested that NEO may be a potential candidate for immunoregulation and treating autoimmune inflammatory diseases through inhibiting immune cell viability and T cell differentiation.


Asunto(s)
Enfermedades Autoinmunes , Células Th17 , Humanos , Factor de Transcripción STAT5/metabolismo , Linfocitos T Reguladores , Diferenciación Celular , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Enfermedades Autoinmunes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...