Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Respir Med ; 231: 107716, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914209

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is the abnormal elevation of pressure in the pulmonary vascular system, with various underlying causes. A specific type of PH is pulmonary arterial hypertension (PAH), a severe condition characterized by high pulmonary arterial pressure resulting from structural changes in distal pulmonary vessels, altered arterial tone, and inflammation. This leads to right ventricular hypertrophy and heart failure. The molecular mechanisms behind PAH are not well understood. This manuscript aims to elucidate these mechanisms using the genetic tool, aiding in diagnosis and treatment selection. METHOD: In our present study, we have obtained blood samples from both patients with pulmonary arterial hypertension (PAH) and healthy individuals. We conducted a comparative transcriptome analysis to identify genes that are either upregulated or downregulated in PAH patients when compared to the control group. Subsequently, we carried out a validation study focusing on the log2-fold downregulated genes in PAH, employing Quantitative Real-Time PCR for confirmation. Additionally, we quantified the proteins encoded by the validated genes using the ELISA technique. RESULTS: The results of the transcriptome analysis revealed that 97 genes were significantly upregulated, and 6 genes were significantly downregulated. Among these, we chose to focus on and validate only four of the downregulated genes, as they were directly or indirectly associated with the hypertension pathway. We also conducted validation studies for the proteins encoded by these genes, and the results were consistent with those obtained in the transcriptome analysis. CONCLUSION: In conclusion, the findings of this study indicate that the four validated genes identified in the context of PAH can be further explored as potential targets for both diagnostic and therapeutic applications.

2.
bioRxiv ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37662379

RESUMEN

Alternative cleavage and polyadenylation (APA) is a gene regulatory mechanism used by cells under stress to upregulate proteostasis-promoting transcripts, but how cells achieve this remains poorly understood. Previously, we elucidated a DNA methylation-regulated APA mechanism, in which gene body DNA methylation enhances distal poly(A) isoform expression by blocking CTCF binding and chromatin loop formation at APA control regions. We hypothesized that DNA methylation-regulated APA is one mechanism cells employ to induce proteostasis-promoting poly(A) isoforms. At the DNAJB6 co-chaperone gene locus, acute heat shock resulted in binding of stress response transcription factors HSF1, ATF6, and YY1 at the APA control region and an increase in the expression of the proximal poly(A) isoform known to prevent protein aggregation. Furthermore, TET1 was recruited to rapidly demethylate DNA, facilitating CTCF binding and chromatin loop formation, thereby reinforcing preferential proximal poly(A) isoform expression. As cells recovered, the transcription factors vacated the APA control region, and DNMT1 was recruited to remethylate the region. This process resolved chromatin looping and reset the poly(A) isoform expression pattern. Our findings unveil an epigenetic mechanism enabling cells to dynamically modulate poly(A) isoforms in response to stress while shedding light on the interplay between DNA methylation, transcription factors, and chromatin looping.

3.
Funct Integr Genomics ; 23(2): 149, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37148427

RESUMEN

Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.


Asunto(s)
Fibrosis Quística , Holarrhena , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Holarrhena/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Análisis de Secuencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento , ARN de Planta/genética , ARN de Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
4.
Funct Integr Genomics ; 23(1): 55, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725761

RESUMEN

Cross-species post-transcriptional regulatory potential of plant derived small non-coding microRNAs (miRNAs) has been well documented by plenteous studies. MicroRNAs are transferred to host cells via oral ingestion wherein they play a decisive role in regulation of host genes; thus, miRNAs have evolved as the nascent bioactive molecules imparting pharmacological values to traditionally used medicinal plants. The present study aims to investigate small RNA profiling in order to uncover the potential regulatory role of miRNAs derived from Andrographis paniculata, one of the most widely used herb by tribal communities for liver disorders and document the pharmacological properties of A. paniculata miRNAs. In this study, high-throughput sequencing method was used to generate raw data, ~ 60 million sequences were generated from A. paniculata leaves. Using computational tools and bioinformatics approach, analyses of 3,480,097 clean reads resulted in identification of 3440 known and 51 putative novel miRNAs regulating 1365 and 192 human genes respectively. Remarkably, the identified plausible novel miRNAs apa-miR-5, apa-miR-1, apa-miR-26, and apa-miR-30 are projected to target significant host genes including CDK6, IKBKB, TRAF3, CHD4, MECP2, and ADIPOQ. Subsequent annotations revealed probable involvement of the target genes in various pathways for instance p38-MAPK, AKT, AMPK, NF-Kß, ERK, WNT signalling, MYD88 dependant cascade, and pathways in cancer. Various diseases such as human papilloma virus infection, Alzheimer's, Non-alcoholic Fatty Liver, Alcoholic liver diseases, HepatoCellular Carcinoma (HCC), and numerous other cancers were predominantly found to be linked with target genes. Our findings postulate novel interpretations regarding modulation of human transcripts by A. paniculata miRNAs and exhibit the regulation of human diseases by plant-derived miRNAs. Though our study elucidates miRNAs as novel therapeutic agents, however, experimental validations for assessment of therapeutic potential of these miRNAs are still warranted.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , MicroARNs/genética , Andrographis paniculata , Análisis de Secuencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica
5.
Nucleic Acids Res ; 49(10): 5637-5653, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34048580

RESUMEN

Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.


Asunto(s)
ARN Largo no Codificante/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
6.
Mol Cell ; 78(4): 752-764.e6, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32333838

RESUMEN

Dysregulation of DNA methylation and mRNA alternative cleavage and polyadenylation (APA) are both prevalent in cancer and have been studied as independent processes. We discovered a DNA methylation-regulated APA mechanism when we compared genome-wide DNA methylation and polyadenylation site usage between DNA methylation-competent and DNA methylation-deficient cells. Here, we show that removal of DNA methylation enables CTCF binding and recruitment of the cohesin complex, which, in turn, form chromatin loops that promote proximal polyadenylation site usage. In this DNA demethylated context, either deletion of the CTCF binding site or depletion of RAD21 cohesin complex protein can recover distal polyadenylation site usage. Using data from The Cancer Genome Atlas, we authenticated the relationship between DNA methylation and mRNA polyadenylation isoform expression in vivo. This DNA methylation-regulated APA mechanism demonstrates how aberrant DNA methylation impacts transcriptome diversity and highlights the potential sequelae of global DNA methylation inhibition as a cancer treatment.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN , Genoma Humano , Poliadenilación , Transcriptoma , Sitios de Unión , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HCT116 , Humanos , Transcripción Genética , Cohesinas
7.
J Mol Biol ; 432(15): 4167-4185, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31682833

RESUMEN

Trypanosoma brucei is a kinetoplastid parasite that causes African trypanosomiasis, which is fatal if left untreated. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune responses. VSGs are exclusively expressed from subtelomeric expression sites (ESs) where VSG genes are flanked by upstream 70 bp repeats and downstream telomeric repeats. The telomere downstream of the active VSG is transcribed into a long-noncoding RNA (TERRA), which forms RNA:DNA hybrids (R-loops) with the telomeric DNA. At an elevated level, telomere R-loops cause more telomeric and subtelomeric double-strand breaks (DSBs) and increase VSG switching rate. In addition, stabilized R-loops are observed at the 70 bp repeats and immediately downstream of ES-linked VSGs in RNase H defective cells, which also have an increased amount of subtelomeric DSBs and more frequent VSG switching. Although subtelomere plasticity is expected to be beneficial to antigenic variation, severe defects in subtelomere integrity and stability increase cell lethality. Therefore, regulation of the telomere and 70 bp repeat R-loop levels is important for the balance between antigenic variation and cell fitness in T. brucei. In addition, the high level of the active ES transcription favors accumulation of R-loops at the telomere and 70 bp repeats, providing an intrinsic mechanism for local DSB formation, which is a strong inducer of VSG switching.


Asunto(s)
ARN de Transferencia/metabolismo , Telómero/metabolismo , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Variación Antigénica , Plasticidad de la Célula , Variación Genética , Estructuras R-Loop , ARN de Transferencia/genética , Trypanosoma brucei brucei/metabolismo
8.
Bioorg Med Chem ; 25(12): 3215-3222, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28428042

RESUMEN

African trypanosomiasis is still a threat to human health due to the severe side-effects of current drugs. We identified selective tubulin inhibitors that showed the promise to the treatment of this disease, which was based on the tubulin protein structural difference between mammalian and trypanosome cells. Further lead optimization was performed in the current study to improve the efficiency of the drug candidates. We used Trypanosoma brucei brucei cells as the parasite model, and human normal kidney cells and mouse macrophage cells as the host model to evaluate the compounds. One new analog showed great potency with an IC50 of 70nM to inhibit the growth of trypanosome cells and did not affect the viability of mammalian cells. Western blot analyses reveal that the compound decreased tubulin polymerization in T. brucei cells. A detailed structure activity relationship (SAR) was summarized that will be used to guide future lead optimization.


Asunto(s)
Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Animales , Línea Celular , Células HEK293 , Humanos , Ratones , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Tripanocidas/síntesis química , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química
9.
Nucleic Acids Res ; 45(10): 5785-5796, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28334836

RESUMEN

Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, thereby evading the host's immune response. VSGs are monoallelically expressed from subtelomeric expression sites (ESs), and VSG switching exploits subtelomere plasticity. However, subtelomere integrity is essential for T. brucei viability. The telomeric transcript, TERRA, was detected in T. brucei previously. We now show that the active ES-adjacent telomere is transcribed. We find that TbRAP1, a telomere protein essential for VSG silencing, suppresses VSG gene conversion-mediated switching. Importantly, TbRAP1 depletion increases the TERRA level, which appears to result from longer read-through into the telomere downstream of the active ES. Depletion of TbRAP1 also results in more telomeric RNA:DNA hybrids and more double strand breaks (DSBs) at telomeres and subtelomeres. In TbRAP1-depleted cells, expression of excessive TbRNaseH1, which cleaves the RNA strand of the RNA:DNA hybrid, brought telomeric RNA:DNA hybrids, telomeric/subtelomeric DSBs and VSG switching frequency back to WT levels. Therefore, TbRAP1-regulated appropriate levels of TERRA and telomeric RNA:DNA hybrid are fundamental to subtelomere/telomere integrity. Our study revealed for the first time an important role of a long, non-coding RNA in antigenic variation and demonstrated a link between telomeric silencing and subtelomere/telomere integrity through TbRAP1-regulated telomere transcription.


Asunto(s)
ADN Protozoario/genética , ARN Largo no Codificante/genética , ARN Protozoario/genética , Telómero/química , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Proteínas de Unión al GTP rap1/genética , Emparejamiento Base , Roturas del ADN de Doble Cadena , ADN Protozoario/metabolismo , Hibridación de Ácido Nucleico , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Telómero/metabolismo , Transcripción Genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
10.
PLoS One ; 11(6): e0156746, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27258069

RESUMEN

Trypanosoma brucei causes debilitating human African trypanosomiasis and evades the host's immune response by regularly switching its major surface antigen, VSG, which is expressed exclusively from subtelomeric loci. We previously showed that two interacting telomere proteins, TbTRF and TbTIF2, are essential for cell proliferation and suppress VSG switching by inhibiting DNA recombination events involving the whole active VSG expression site. We now find that TbTIF2 stabilizes TbTRF protein levels by inhibiting their degradation by the 26S proteasome, indicating that decreased TbTRF protein levels in TbTIF2-depleted cells contribute to more frequent VSG switching and eventual cell growth arrest. Surprisingly, although TbTIF2 depletion leads to more subtelomeric DNA double strand breaks (DSBs) that are both potent VSG switching inducers and detrimental to cell viability, TbTRF depletion does not increase the amount of DSBs inside subtelomeric VSG expression sites. Furthermore, expressing an ectopic allele of F2H-TbTRF in TbTIF2 RNAi cells allowed cells to maintain normal TbTRF protein levels for a longer frame of time. This resulted in a mildly better cell growth and partially suppressed the phenotype of increased VSG switching frequency but did not suppress the phenotype of more subtelomeric DSBs in TbTIF2-depleted cells. Therefore, TbTIF2 depletion has two parallel effects: decreased TbTRF protein levels and increased subtelomeric DSBs, both resulting in an acute increased VSG switching frequency and eventual cell growth arrest.


Asunto(s)
Variación Antigénica , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Protozoarias/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Alelos , Roturas del ADN de Doble Cadena , ADN Protozoario/genética , Conversión Génica , Genotipo , Fenotipo , Complejo de la Endopetidasa Proteasomal/química , Interferencia de ARN , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
11.
PLoS One ; 11(1): e0146289, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26771307

RESUMEN

OBJECTIVES: There is an urgent need to develop a safe, effective, orally active, and inexpensive therapy for African trypanosomiasis due to the drawbacks of current drugs. Selective tubulin inhibitors have the potential to be promising drug candidates for the treatment of this disease, which is based on the tubulin protein structural difference between mammalian and trypanosome cells. We propose to identify novel tubulin inhibitors from a compound library developed based on the lead compounds that selectively target trypanosomiasis. METHODS: We used Trypanosoma brucei brucei as the parasite model, and human normal kidney cells and mouse microphage cells as the host model. Growth rates of both trypanosomes and mammalian cells were determined as a means to screen compounds that selectively inhibit the proliferation of parasites. Furthermore, we examined the cell cycle profile of the parasite and compared tubulin polymerization dynamics before and after the treatment using identified compounds. Last, in vivo anti-parasite activities of these compounds were determined in T. brucei-infected mice. RESULTS: Three compounds were selected that are 100 fold more effective against the growth of T. brucei cells than mammalian cells. These compounds caused cell cycle progression defects in T. brucei cells. Western analyses indicated that these compounds decreased tubulin polymerization in T. brucei cells. The in vivo investigation revealed that these compounds, when admitted orally, inhibited T. brucei cell proliferation in mouse blood. However, they were not potent enough to clear up the infection completely. CONCLUSIONS: These compounds are promising lead compounds as orally active agents for drug development of anti-trypanosome agents. A more detail structure activity relationship (SAR) was summarized that will be used to guide future lead optimization to improve the selectivity and potency of the current compounds.


Asunto(s)
Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Moduladores de Tubulina/farmacología , Administración Oral , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Ratones , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Tripanocidas/efectos adversos , Tripanosomiasis Africana/tratamiento farmacológico , Moduladores de Tubulina/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...